设随机变量X在区间(0,1)Y的密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:23:18
设随机变量X在区间[-1,2]上服从均匀分布;随机变量(如图),求Y与Y^2的期望、方差.

首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

1、设随机变量X服从区间(0,2)上的均匀分布,试求随机变量Y=X2的概率密度.(X2为X的平方,百度上打不出在上方的小

1、方法一:求Y的累积分布函数Fy(y),对Fy(y)求导可得概率密度函数fy(y)已知X的累积分布函数Fx(x)=P(X

设随机变量X在区间[-1,2]上服从均匀分布,令Y=1,若X>0;令Y=0,若X=0;令Y=-1,其他.求Y的方差.

y=1的概率是2/3y=0的概率是0y=-1的概率是1/3EY=1*2/3-1*1/3=1/3E(Y^2)=1方差D(Y)=E(Y^2)-(EY)^2=1-1/9=8/9

设随机变量x在区间[-1,2]上服从均匀分布,随机变量Y=1.x>0;Y=0,x=0;Y=-1,x0)=2/3,

U(-1,2)概率密度f(x)=1/3,2>x>-10,其他P(Y=1)=P(X>0)=∫(下限0到上限正无穷大)f(x)dx=∫(下限0到上限2)1/3dx=2/3