设随机变量X服从均匀分布[-π 2,π 2],求Y=2cosX
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:15:35
密度函数为f(x)={1/4(2
(1)f(x)=1/(b-a)=1/4P{-0.5
再答:方法是这样的~~再问:然到是老师?强再答:不是~再问:答案好像错了,那个并是怎么划分的?再答:方法是这样的,没错再答:算错了吧再答:算得比较匆忙~再答:你自己算算看再问:那并搞不懂为什么那么分再
Fy(y)=P{Y≤y}=P{X^2≤y}当y
因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。
(1)P{x1
F(y)=P(sinx再问:密度函数呢。。。再答:对F(Y)求导,得密度函数f(y)=1/π(根号1-x^2)-1
用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0
U(0,2π)分布函数F(y)=P(y)=P(Y
1x的概率密度为f(x)=1/(0.2-0)=5,0x)25e^(-5y)dy=1/e
x的概率密度函数f(x)=1,-1/2
1、概率密度f(x,y)=f(x)*f(y)=25e^(-5y)0
记Z=min(X,Y)],X分布函数F1(x),Y分布函数F2(y),F1=F2Z分布函数F(z)=P[Zz]=1-P[min(X,Y)>z]=1=P[X>z,Y>z]=1-P(X>z)P(Y>z)=
FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0
先求出分布函数的关系如图,再求导得出Y的概率密度.经济数学团队帮你解答,请及时采纳.
0.52x+(118-x)*0.33=53