证明:矩阵X2=A有解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:47:17
我只能告诉你大概步骤了:构造一个(AB都为n阶)|AO||-EB|的分块行列式,然后通过行列式转换可以转换为:(-1)^n|-EO||AC|(其中C=AB)利用分块行列式的乘法就可以证明|AB|=|A
设ε1ε2ε3.εn是n维基本向量组.即每个εi=(0,0,...,0,1,0,...,0)^T,1在第i个位置.由已知条件,Aεi=0.所以A(ε1,ε2,ε3,.,εn)=O.即有AEn=O.所以
如果你知道奇异值分解,那么结论显然.如果不知道就这样做:若r(A)=k,那么可以用Gauss消去法把A消成梯阵,即CA=U,其中C是行初等变换的乘积,U仅有前k行非零且线性无关.于是CAA^TC^T=
因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(
非齐次方程组无解的情况是系数矩阵的秩与增广矩阵的秩不一样而题中系数矩阵的秩m,方程组也只有m个,所以增广矩阵的秩不可能大于m,且增广矩阵的秩是大于系数矩阵的,所以增广矩阵的秩也为m,所以此非齐次方程组
这不是Cramer法则吗?去看看吧.
AB都是n阶方阵吗再问:是的再答:再答:再答:再答:
设A的元素为:a(i,j),i,j=1,2,...n取:aT=(0,0...1.,0,...0)(第i个为1,其余为0)则由aT*A*a=0,可得出:a(i,i)=0i=1,2,...n.再取:aT=
恐怕你的结论不对,例如:a=[1,2,3;4,5,6];b=a'c=a*b=[2228;4964]|ab|=|c|=det(c)=36!=0.
再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。
"由于|ab|不等于0,则ab方阵可逆,"这段不成立.r(ab)=1=>|ab|=0,ab肯定是不可逆的.从Aab=0,如果A可逆,则A^(-1)*Aab=0=>ab=0这与ba=1矛盾.所以A不可逆
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
A特征值有n-1个0,还有一个特征值是对角元之和
这是定理,教材中有的,你查查先
题目中的“f(x)为负定矩阵”应为“f(x)为负定二次型”.详细解答见图片[参考文献]张小向,陈建龙,线性代数学习指导,科学出版社,2008.周建华,陈建龙,张小向,几何与代数,科学出版社,2009.
A进行LU分解,使得L行满秩,U列满秩,令X=U'(U'U')^-1(LL')^-1L'AXA=LUU'(U'U')^-1(LL')^-1L'LU=A可以看出X=U'(U'U')^-1(LL')^-1
证明:必要性:因为AX=Em有解所以Em的列向量组可由A的列向量组线性表示所以m=r(Em)=Em的列秩=m而A只有m行,所以r(A)再问:确定对吗?再答:呵呵保证
只需证明A'A的秩等于(A'A,A'B)的秩,即r(A'A)=r(A'A,A'B)首先r(A'A)
线性方程组Ax=b有惟一解r(A)=n(A^T)A是n×n实矩阵A是列满秩r(A^TA)=r(A^T)=r(A)=nATA是可逆矩阵.
证明方法:左边按公式展开!右边先用行列式公式计算,然后进行组合,会发现和左边对应相等.不过书写太麻烦了!