证明A与B相互独立的充要条件是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:30:45
这是显而易见的啊,概率事件独立的定义.再问:既然显而易见,你说说也无妨嘛再答:我已经证明了,根据概率事件独立的定义即可证明。再问:ok,我表示现在脑残,请你打出来吧再答:独立的定义P(ABC)=P(A
要证AB与C独立就是证P[(AB)C]=P(AB)P(C),左边=P(ABC)=P(A)P(B)P(C),由于A,B相互独立,所以P(AB)=P(A)P(B),所以右边=P(A)P(B)P(C),得证
如果事件A,B相互独立,那么(非A),B也相互独立.证明:P(非A)=1-P(A)-----(1)P(B)=P{B(A+(非A))}=P(AB)+P{(非A)B}=P(A)P(B)+P{(非A)B}(
由B、C独立:P(A(B+C))=P(AB)+P(AC)由A、B独立,A、C独立:P(AB)=P(A)P(B),P(AC)=P(A)P(C)于是P(A(B+C))=P(A)(P(B)+P(C))=P(
P(AB)=P(A)P(B)P(A非B)=P(B)-P(AB)=P(B)-P(A)P(B)=(1-P(A))P(B)=P(A非)P(B)所以A非与B独立P(AB非)=P(A)-P(AB)=P(A)-P
因为时间P(a)的概率是0,所以发生时间a的可能为零,所以发生时间b时必然不与a相关,所以a,b是相互独立时间呀
证明:P(abc)=p(a)p(b)p(c)因为已知a,b,c相互独立;所以bc相互独立即p(bc)=p(b)p(c);P(abc)=p(a)p(b)p(c)=p(a)p(bc)所以a与bc相互独立再
首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC
画个图不就明白了?或者用反证法:假如不独立,则必有AUB中的元素在C中也有,而A,B,C相互独立,怎不可能有元素同时在AUB和C中同时存在.即得证.
篇幅有限,最后一步交叉乘过去化简就得到了.还有疑问欢迎追问.
事件A与事件~A构成概率空间若A与B相互独立,则事件B与A与事件~A构成概率空间之间独立故A的逆与B也相互独立
记由数学期望的定义,知由于XY只有两个可能值1和-1,所以从而,因此,Cov(X,Y)=0当且仅当,即X和Y不相关当且仅当事件A与B相互独立.返回
首先要知道两事件相互独立的充要条件
对再问:需要证明过程再答:P(A*B)=P(A)*P(B)设事件C为B补所以P(B|A)+P(C|A)=1,P(C)+P(B)=1P(AB)=P(A)P(B|A)P(AC)=P(A)*P(C|A)=P
因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C)P(AB)=P(A)P(B)所以P(CAB)=P(ABC)=P(A)P(B)P(C)=P(AB)P(C)所以C与AB相互独立
由题干有AU非C的结果为:A和非C,ABC三者相互独立则所求证的AU非C与B相互独立
由A出发证明到B,再反过来由B出发证明到A你可以把题目发上来
X与Y相互独立的充要条件是f(x,y)=f(x)f(y).X与Y相互独立可以推出相关系数为0;但是相关系数为0推不出X与Y相互独立,除非附加条件:X与Y服从二维正态分布.
由以知:P(A|B)=P(A|B逆)利用条件概率公式化为:P(AB)/P(B)=P(AB逆)/P(B逆)(1)其中P(AB逆)=P(A)-P(AB)P(B逆)=1-P(B)带入(1)式得:P(AB)/