证明f(x) f(x a)=0的周期为2a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:18:51
A,望采纳AB点处的导数均为负值,而B点处斜率较大,到数值较小
分段函数分段解决 当aa 存在1/a>a a^2a 1/2a^2-a>0 解得a2当a
/>(1)∵(1+x)/(1-x)>0 ∴(1+x)(1-x)>0 ∴(x+1)(x-1)
因为lim(x->0)f(x)/x=1所以f(x)=x+f''(θx)/2*x^2因为f''(x)>0所以f(x)>=x
∵f(x)=x+sinx∴f'(x)=1+cosx∵0≤x≤2π,∴-1≤cosx≤1∴0≤1+cosx∴f'(x)≥0f(x)=x+sinx在0≤x≤2π单调递增,因此f(x)=x+sinx在0≤x
证明:因为f(x)为偶函数所以f(x)=f(-x)此式两边对x求导有f'(x)=-f'(x)又因为f'(0)存在代入有f'(0)=-f'(0)故f'(0)=0证毕
选择B通过斜率看还有注意一点就是这里的两个选项都是负的,所以不能单单看图再问:什么叫做这两个选项都是负的?为什么?再答:因为过他们两点的斜率都是过二四象限都是负的,所f'(xA)与f'(xB)的值也是
构造罕数F(x)=f(x)*e^g(x).可知若f(a)=f(b),F(a)=F(b),那么ab之间必存在一点c使得F'(c)=0.对F(x)求导即可得到题目的结果.
证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)
∵幂函数f(x)=xa的图象过点(12,22),∴(12)α=22,解得α=12,∴函数f(x)=x12;∴不等式f(|x|)≤2可化为|x|12≤2,即|x|≤2;解得|x|≤4,即-4≤x≤4;∴
由题意,∵f(x)=xa(x+2)(x∈R,a≠0)有唯一不动点∴xa(x+2)=x有唯一解,∴x=0,a=12∴f(x)=2xx+2∴an+1•f(1an)=an+1•21+2an=1∴an+1-a
由幂函数的定义知a−2=1a∈R,解得a=3.故答案为:3.
因为f(1*1)=f(1)+f(1)所以f(1)=0又f(y)*f(1/y)=f(y)+(f1/y)=f(1)=0所以-f(y)=f(1/y)所以f(x/y)=f(x)+f(1/y)=f(x)-f(y
(1)所给函数f(x)=((2a+1)/a)-(1/(xa^2))=2+1/a-1/a^2*1/x,是b-c/x(b、c>0)的形式,增减性用定义自己算一下应该不难.(2)根据单调性有,f(m)=m,
设μ1=ax,μ2=xa,其中a>0,则g(x)=f(μ1)+f(μ2)且μ1、μ2∈[-12,32].∴-12≤ax≤32-12≤xa≤32⇒-12a≤x≤32a-a2≤x≤32a①当a≥1时,不等
当x>=0时x/2-1>x得:-1>x/2-1/2>x与x>=0无交集,所以无解当xx得:1得:x1x<-1与x1与x
f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a)令x=x+af(x+a)+f(x+2a)+f(x+3a)+f(x+
a≥01/2a-1>a(2a^2-a-1)/(2a-1)
由题意f(2)=2a=22=2−12,所以a=-12,所以f(x)=x−12,所以f(4)=4−12=12故答案为:12
等式两边对y求导,然后令y=0,可得到函数的导数恒为a,在积分回去就得到一次函数,在根据原等式就得到了f(x)=ax再问:能写一写吗再问:不懂啊再答:再问:谢谢了好牛逼