证明f(x) f(x a)=0的周期为2a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:18:51
高二导数习题 已知函数y=f(x)的图象如图,则f'(xA)与f'(xB)的大小关系是

A,望采纳AB点处的导数均为负值,而B点处斜率较大,到数值较小

已知分段函数f(x)=x/2-1(x≥0),1/x(xa,求a的取值范围

分段函数分段解决  当aa  存在1/a>a  a^2a  1/2a^2-a>0  解得a2当a

泰勒公式的证明题设lim(x->0)f(x)/x=1 且f''(x)>0 证明f(x)>=x

因为lim(x->0)f(x)/x=1所以f(x)=x+f''(θx)/2*x^2因为f''(x)>0所以f(x)>=x

证明f(x)=x+sinx (0

∵f(x)=x+sinx∴f'(x)=1+cosx∵0≤x≤2π,∴-1≤cosx≤1∴0≤1+cosx∴f'(x)≥0f(x)=x+sinx在0≤x≤2π单调递增,因此f(x)=x+sinx在0≤x

若f(x)是偶函数且f'(0)(f(0)的导数)存在,证明:f'(0)=0.

证明:因为f(x)为偶函数所以f(x)=f(-x)此式两边对x求导有f'(x)=-f'(x)又因为f'(0)存在代入有f'(0)=-f'(0)故f'(0)=0证毕

已知函数y=f(x)的图像如图所示,则f'(xA)与f'(xB)的大小关系是?A.f'(xA)>

选择B通过斜率看还有注意一点就是这里的两个选项都是负的,所以不能单单看图再问:什么叫做这两个选项都是负的?为什么?再答:因为过他们两点的斜率都是过二四象限都是负的,所f'(xA)与f'(xB)的值也是

设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根

构造罕数F(x)=f(x)*e^g(x).可知若f(a)=f(b),F(a)=F(b),那么ab之间必存在一点c使得F'(c)=0.对F(x)求导即可得到题目的结果.

f(xy)=f(x)+f(y),证明f(x/y)=f(x)-f(y)

证明令x=x/y,y=y∵f(xy)=f(x)+f(y)∴f(x/y*y)=f(x/y)+f(y)f(x)=f(x/y)+f(y)∴f(x/y)=f(x)-f(y)

已知幂函数f(x)=xa的图象过点(12

∵幂函数f(x)=xa的图象过点(12,22),∴(12)α=22,解得α=12,∴函数f(x)=x12;∴不等式f(|x|)≤2可化为|x|12≤2,即|x|≤2;解得|x|≤4,即-4≤x≤4;∴

方程f(x)=x的实根x0叫做函数f(x)的不动点,则f(x)=xa(x+2)(x∈R,a≠0)有唯一不动点,数列{an

由题意,∵f(x)=xa(x+2)(x∈R,a≠0)有唯一不动点∴xa(x+2)=x有唯一解,∴x=0,a=12∴f(x)=2xx+2∴an+1•f(1an)=an+1•21+2an=1∴an+1-a

若幂函数的解析式为f(x)=(a-2)xa,则a=______.

由幂函数的定义知a−2=1a∈R,解得a=3.故答案为:3.

如果函数f(x)的定义域为(0,+∞)且在(0,+∞)上是增函数,f(xy)=f(x)+f(y).证明f(x/y)=f(

因为f(1*1)=f(1)+f(1)所以f(1)=0又f(y)*f(1/y)=f(y)+(f1/y)=f(1)=0所以-f(y)=f(1/y)所以f(x/y)=f(x)+f(1/y)=f(x)-f(y

已知函数f(x)=((2a+1)/a)-(1/(xa^2)),常数a>0

(1)所给函数f(x)=((2a+1)/a)-(1/(xa^2))=2+1/a-1/a^2*1/x,是b-c/x(b、c>0)的形式,增减性用定义自己算一下应该不难.(2)根据单调性有,f(m)=m,

已知函数f(x)的定义域为x∈[-12,32],求g(x)=f(ax)+f(xa)(a>0)的定义域.

设μ1=ax,μ2=xa,其中a>0,则g(x)=f(μ1)+f(μ2)且μ1、μ2∈[-12,32].∴-12≤ax≤32-12≤xa≤32⇒-12a≤x≤32a-a2≤x≤32a①当a≥1时,不等

设函数f(x)={x/2-1 (x大于等于0) 1/x (xa,求a的取值范围

当x>=0时x/2-1>x得:-1>x/2-1/2>x与x>=0无交集,所以无解当xx得:1得:x1x<-1与x1与x

证明一个函数的周期设a>0,如果f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+

f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a)令x=x+af(x+a)+f(x+2a)+f(x+3a)+f(x+

如果幂函数f(x)=xa的图象经过点(2,22)

由题意f(2)=2a=22=2−12,所以a=-12,所以f(x)=x−12,所以f(4)=4−12=12故答案为:12

高等数学的一个证明题,若f'(0)=a,且f(x+y)=f(x)+f(y),证明f(x)=ax

等式两边对y求导,然后令y=0,可得到函数的导数恒为a,在积分回去就得到一次函数,在根据原等式就得到了f(x)=ax再问:能写一写吗再问:不懂啊再答:再问:谢谢了好牛逼