证明事件AB相互独立的充要条件
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:16:24
证明独立只有用定义先求出X,Y的边缘概率密度函数fX(x),fY(y).(离散情况就是边缘概率分布函数FX(x),FY(y))再看联合概率函数是不是边缘概率函数的乘积fXY(x,y)=fX(x)*fY
相互独立:P(ABC)=P(A)P(B)P(C);P(BC)=P(B)P(C)所以:P(A逆BC)=P(BC-A)=P(BC-ABC)【这里是根据P(A-B)=P(A-AB)的定理得来的】=P(BC)
如果事件A,B相互独立,那么(非A),B也相互独立.证明:P(非A)=1-P(A)-----(1)P(B)=P{B(A+(非A))}=P(AB)+P{(非A)B}=P(A)P(B)+P{(非A)B}(
由B、C独立:P(A(B+C))=P(AB)+P(AC)由A、B独立,A、C独立:P(AB)=P(A)P(B),P(AC)=P(A)P(C)于是P(A(B+C))=P(A)(P(B)+P(C))=P(
首先说明,两个事件A,B独立当且仅当P(AB)=P(A)P(B)因为A,B,C相互独立,所以P(ABC)=P(A)P(B)P(C),P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC
A或B发生与C独立A发生且B发生与C独立A发生Bu发生与C独立相互独立就是2个事件的相关系数为O
篇幅有限,最后一步交叉乘过去化简就得到了.还有疑问欢迎追问.
他们的对立事件不一定是相互独立的.例如全事件为ABC,(假如ABC相互独立),则A补为B并C,B补为A并C.显然A补与B补不独立.
设A=“第一次摸到白球”,B=“第三次摸到白球”我计算后p(A)=p(B)=3/10成立,挺奇怪的我证明了当白球个数W超过3个,红球R个数超过2个时,p(A)=P(B)=W/(W+R)恒成立.还能够证
就是不独立啊独立事件的话满足p(A)p(B)=p(AB)这里p(A)=1/2,p(B)=1/2,p(AB)=79/300,明显不对嘛再问:恩,按照公式看确实是不独立,但是我是这么想的,如果把炒股换成抛
首先要知道两事件相互独立的充要条件
相互独立事件(independentevents):事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件其实没有明确的相交与互斥关系.因为相交就意味着事
1就是有789个需要把概率相加级可以C(9,7)*0.2^7*0.8^2+C(9,8)*0.2^8*0.8+C(9,9)*0.2^9=3.13856*10^(-4)2超负荷实际就是超过7个工人这个题目
题目写错了吧,应该是设随机事件A,B相互对立,试证:A,B也相互独立.
大清早5点起来问题目,精神可嘉啊先看看事件相互独立的定义:P(A∩B)=P(A)∩P(B),也就是事件交集的概率可拆,说的是一个意思
两事件独立的定义:P(A)*P(B)=P(AB)'AB'表示两事件同时发生本题中:如果是可放回的,当然独立,就相当于从两副扑克中分别抽你也可以用定义算一下再问:定义我懂,关键是只从52张中抽取1张,只
对于四发动机飞机,安全飞行事件A由以下三事件组成,A1:四台发动机全部正常,A2任意三台正常,A3,任意2台正常,即P(A)=P(A1)+P(A2)+P(A3)=p^4+4*p^3*(1-p)+6*p
事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率P(A*B)=P(A)*P(B)
由以知:P(A|B)=P(A|B逆)利用条件概率公式化为:P(AB)/P(B)=P(AB逆)/P(B逆)(1)其中P(AB逆)=P(A)-P(AB)P(B逆)=1-P(B)带入(1)式得:P(AB)/