证明必存在正定矩阵使得A=B的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/09 03:01:18
矩阵正定的证明问题证明对任意m×n阶实矩阵A,必存在 a 使得aIn+A'*A为正定

因A'A对称,可以对角化为Pdiag(a1,...,an)P',P是正交阵取a>|ai|,i=1,2,...,n则aIn+A'A=Pdiag(a+a1,...,a+an)P',特征值都是正数,从而正定

A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

设n阶矩阵A对称正定,n阶矩阵B为对称矩阵,证明存在合同变换矩阵P,使得P'AP与P'BP均为对角矩阵

存在可逆矩阵M使得M'AM=E此时M'BM仍然对称,从而存在正交矩阵Q使得Q'M'BMQ=DD为对角阵.令P=MQ即可

设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

证明:矩阵A~B的充要条件是存在可逆矩阵P,Q使得PAQ=B

充分性:因为P、Q可逆,所以P,Q可以分解成若干个基本初等矩阵的积,所以A~B必要性:因为A~B,所以A经过若干次初等行列变换后成为B,即PAQ=B,(P、Q可逆)

求证A是n阶正定矩阵,则存在 唯一的正定矩阵B,使A=B^2 我会存在性,这里求证唯一性

如果存在另外的正定矩阵C,满足A=C^2,下面证明B=C.B和C都是正定矩阵,所以都可以完美对角化,都有对应特征值和特征向量.因为B^2=A,所以B特征值的平方对应A的特征值,相应的特征向量对应A的相

证明A为正定矩阵的充要条件是存在可逆矩阵U,使A=U'U

如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证.如果A为对称正定矩阵,

证明若A是n阶正定矩阵,则存在n阶正定矩阵B,使A=B^2

如果A=U'U,则A'=(U'U)'=U'U=A,故A是对称的,对任意非零x,由U可逆,Ux也非零,由x'Ax=x'U'Ux=(Ux)'(Ux)>0,故A是正定矩阵.充分性得证.如果A为对称正定矩阵,

证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2

正定矩阵都是对称阵,所以可以正交相似对角化.即存在正交阵O使得A=O'diag{a1,a2,...,an}O,再由A正定知对角元全为正数,即a1,a2,...,an>0.令b1=√a1,b2=√a2,

A,B为n阶实对称矩阵,且B是正定矩阵,证明:存在实可逆矩阵C使得C'AC和C'BC都是实对角矩阵.C'表示C的转置

B正定,存在可逆阵D,使得D’BD=E,记M=D‘AD是对称阵,故存在正交阵Q,使得Q'MQ是对角阵,令C=DQ,则C'AC=Q'D'ADQ=Q'MQ是对角阵,C'BC=Q'D'BDQ=Q'EQ=E是

A,B是正定矩阵 AB=BA 证明AB也为正定矩阵

实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定

假设A是sXn矩阵.证明:存在半正定sXs Hermite矩阵B,使得A*(A^H)=B^2 .(A^H) 为A的共轭转

A*(A^H)是Hermite半正定矩阵,用一下谱分解定理直接就出来了.

证明一个N阶实对称矩阵A是正定的当且仅当存在可逆实对称矩阵B,满足A=B*B

若A正定,则存在正交矩阵T,A=T^(-1)PT.其中P=diag(a1,…an)为A的标准型,ai>0.记Q=diag(√a1,…√an),取B=T^(-1)QT即可!若A=B^2,B实对称,类似上

设A,B为实对称矩阵,且B正定,则存在S及对称矩阵D,使得

先对B做Cholesky分解B=L*L^T,然后对L^{-1}AL^{-T}做谱分解L^{-1}AL^{-T}=QDQ^T,S=LQ即可.

有关正定矩阵的问题设A为n阶对称矩阵,证明:A满秩的充要条件是存在实矩阵B,使AB+B-TA为正定矩阵.

对A用对称阵的规范型来作.再问:它分成了两项,怎么弄到一起额再答:-》如果A满秩,取B=A《-反证法。如果A不满秩,假定A本身就具有规范型。A的规范型中有0,这样AB+BTA,有零对角元素,不可能是正

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

证明:(半)正定矩阵A都可以写成另一个(半)正定矩阵B的平方,即A=B^2

A(半)正定,则A对称.设A的特征值分解为A=QDQ^T,其中Q是正交阵,D是对角阵,D=diga(d1,d2,...,dn).由于A(半)正定,故D(半)正定,于是di>0(di>=0),1=0),