证明方程x3-5x2 2=0在区间(0,1)内有且仅有一个实根
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:25:28
ok再答:x3+x+2=x3-x+2x+2=x(x2-1)+2(x+1)=x(x-1)(x+1)+2(x+1)=(x+1)(x2-x+2)=0所以x+1=0或x2-x+2=0x+1=0时x=-1x2-
再答:啧,反了,等等再答: 再答:望采纳
证明:设f(x)=x3-3x+c,则f'(x)=3x2-3=3(x2-1).当x∈(0,1)时,f'(x)<0恒成立.∴f(x)在(0,1)上单调递减.∴f(x)的图象与x轴最多有一个交点.因此方程x
首先f(x)的定义域为R,即(-∞,+∞),关于原点对称;然后,f(-x)=(-x)³+5(-x)=-x³-5x=-(x³+5x)=-f(x)即f(x)+f(-x)=0,
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0所以3k2+16k+16≤0,所以(3k+4)(k+4)≤0解得-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得
方程x^2-x-1=0的两根为x1,x2,∴x1+x2=1,x1x2=-1.∴1/x1^2+1/x2^2=(x1^2+x2^2)/(x1x2)^2=(x1+x2)^2-2x1x2=1+2=3.
求导.1.两次求导得出X=4/3是二阶导数取得最小值-16/3画出二阶导数的大概图形2.对于一阶导数根据二阶导数和X=0和X=8/3是一阶导数等于0画出一阶导数的大概图形3.由一阶导数得对于原函数X=
令f(x)=x³-2x²+x+1则f(-2)0因为f(x)在区间内连续所以由介值定理f(x)在区间内和x轴有交点所以有实根
证明:令F(X)=X3+X-1,则F(1)=1,F(0)=-1,根据零点定理可得,在区间(0,1)内,至少存在一点t,使得F(t)=0.因为F(X)在R上单调递增,所以只可能存在一点t,使得F(t)=
证明:令f(x)=x³-4x²+1,则f(x)在(0,1)内连续∵f(0)=1>0f(1)=-2
因为sin(x)在(1,pi/2]上为增函数,在[pi/2,2)上为减函数,sin(1)=0.8415,sin(pi/2)=1,sin(2)=0.9093所以sin(1)
∵x1,x2是方程x2+x-4=0的两个实数根,∴x12=4-x1,x22=4-x2,x1+x2=-1,∴x13-5x22+10=x1(4-x1)-5(4-x2)+10,=4x1-(4-x1)-20+
∵x1、x2是方程x2-5x-6=0的两个根,∴x1+x2=-ba=5,x1•x2=ca=-6,∴x12+x22=(x1+x2)2-2x1x2=25+12=37.故选A
设有p个x取1,q个x取-2,有p−2q=−17p+4q=37,(5分)解得p=1q=9,(5分)所以原式=1×13+9×(-2)3=-71.(3分)
由方程有实根,得△≥0,即(k-2)2-4(k2+3k+5)≥0⇒3k2+16k+16≤0⇒(3k+4)(k+4)≤0⇒-4≤k≤-43.又由x1+x2=k-2,x1•x2=k2+3k+5,得x12+
X1,X2是方程X2-(K-2)+(K2+3K+5)=0的两个实根根据韦达定理x1+x2=K-2,x1x2=K2+3K+5x21+x22=(x1+x2)2-2x1x2=(k-2)2-2k2-6k-10
答:x^3-x^2-5x+6=0(x^3-2x^2)+(x^2-5x+6)=0(x-2)x^2+(x-2)(x-3)=0(x-2)(x^2+x-3)=0所以:x-2=0或者:x^2+x-3=0解得:x
设y=f(x)=x³-3x²+1y'=3x²-6x=3x(x-2)当x属于[0,1]时x(x-2)
解题思路:根与系数的关系解题过程:最终答案:略
有一个实根,F(x)=x³-4x²+1=0,求导得3x²-8x