O为三角形ABC的重心,D.E为AB.AC的中点求三角形DCE和BOC的周长比
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:40:59
等于对应中线长度之比
AB+FE+DC=AF+FB+FE+DC=AF+FE + FB+DC=AE+FB+DC=1/2(AC+AB+BC)=1/2(AC+AC)=AC
答案选择C.需要明确的关系:1.重心将中线分成2:1两部分,即在该题中CM=2MF.2.根据向量相加符合平行四边形原则,向量MA+向量MB=2向量MF.3.则原题=2向量MF-向量MC=2向量MF+向
四边形PABC是空间四边形作AB、BC的重点M、N连接PM、PN(过D、E)易得DE平行且相等于2/3MNMN平行且相等于1/2AC所以DE平行且相等于1/3AC
把ΔABC放到坐标系,设点A为(0,a),点B,C分别为(-c,0),(c,0),点D为(-c/2,a/2),取AC中点G,DGǁ且=OC,所以DG=OC=(c,0),DE=2/3*OC=(
三角形重心的定义:重心是三角形三边中线的交点重心的几条性质:1、重心到顶点的距离与重心到对边中点的距离之比为2:1.2、重心和三角形3个顶点组成的3个三角形面积相等. 3、重心到三角形3个顶
证明:如图:1、长AC,BG'交于N点,由于:BM=CM,GM=G'M所以四边形BG'CG是平行四边形.有:BH//DC、CL//BN因为:AL=LB,CL//BN所以:AC=
题目不对吧?应该是OH=1/3(OA+OB+OC)证明:OH=OA+AH=OA+2/3AD=OA+2/3(AB+BD)=OA+2/3(AB+1/2BC)=OA+2/3AB+1/3BC=OA+2/3(O
1、因为重心是中线的三等分点,BG和AF都是它中线的三分之二,按三角形的相似性可知道AB//FG且FG=(1/3)AB,同理可知道AB、BC、AC分别平行于FG、EF、EG &n
如图:1.向量运算的平行四边形法则 2.重心的性质, 1:2可得答案 A
此题我做过.初三上册的图大概这样.A.IB.E.C.D是证明DB=CD吧?证明:∵AD平分∠BAC∴∠BAD=∠CAD∵∠BDC=∠CAD∠BAD=∠BCD(同圆种弧所对圆周角相等)∴∠BDC=∠BC
百度百科“三角形的四心”,有详尽的相关证明
三角形重心有一个性质,它是中线的三等分点,也就是3DG=DC,所以才有了上面的等式.
结果是零向量下面省去向量,直接用字母GA+GC=2GFGA+GB=2GDGB+GC=2GE所以GD+GE+GF=GA+GB+GC而GA+HB=-2GC即结果为0向量
连接各交点,将重叠部分分为了6个小三角形,可以看出这6个小三角形是全等的正三角形,且和非重叠部分的6个小三角形也全等.从而知道重叠部分的面积为6/9*原三角形的面积√3/6
OA+OB=OD(作出平行四边形)则OD交AB于E,则E为AB中点,又OA+OB=-OC,则-OC=OD,故O,C,D,E四点共线,即CE为中线,同理证其它情况得O中线交点,则为重心
(原题少了DE∥BC的条件)如图,点M、N为AB、AC中点,BM、CN交于P,则MN∥BC,且MN=BC/2,由△PMN∽△PBC得PM/PB=MN/BC=1/2; 当DE∥BC时∴ME/E
连接CG并延长交AB于H,设CE=X∵G是△ABC的重心∴CG/GH=2/1,AH=BH∵CF∥AB∴CF/DH=CG/GH=2/1∴DH=CF/2=X/2∵DE∥BC∴平行四边形BCFD∴BD=CF
如图,点M、N为AB、AC中点,BM、CN交于P,则MN∥BC,且MN=BC/2,由△PMN∽△PBC得PM/PB=MN/BC=1/2; 当DE∥BC时∴ME/EC=MP/PB=1/2,∴A