PA垂直于底面ABCD且底面各边都相等
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:16:50
连接MN、AM∵PA⊥平面ABCD,平面PAB经过PA∴平面PAB⊥平面ABCD∵AD⊥PA且AD⊥AB,∴AD⊥平面PAB∵M、N都是中点,∴MN//BC//AB,则MN⊥平面PAB所以DN在平面P
‖= 看作:平行且等于 1、证明 : ∵PA⊥面ABCD ∴PA⊥AC 又∵AB⊥AC 且AP∩AB于A ∴AC⊥面PA
AF=(2/3)a先求出PA的长,可设PA的长为未知数X,利用勾股定理表示出PB,PC,由PB乘以BC等于PC乘以BE,可求出PA,由PA求出PC,再由BC的平方等于CE乘以CP,求出CE,CE是CP
教你个万能的方法,只有你会用向量,什么角都可以直接解出来.利用的就是向量有方向的性质.接触以上两个平面的法向量a,b,|cosθ|=|a·b|/|a||b|根据图形判断θ是锐角还是钝角.就可以得到θ值
先建立空间直角坐标系再用法向量求
设O=AC∩BD则OM∥=PA/2﹙中位线﹚OM∈平面MBD.A不在平面MBD∴PA∥平面MBD
分析:(1)取PB的中点为M连结AM,MF,利用已知条件证明AMFE是平行四边形,即可求证EF∥面PAB(2)利用已知条件通过直线与平面垂直的判定定理证明EF⊥面PBD(3)通过(2),利用BD⊥平面
一、(1)平面APC中,连结CG,延长交AP于E,连结GF、BE,∵G是△APC重心,∴CG/GE=2,而CF/BF=2,在三角形BEC中,∵CF/BF=CG/EG=2,∴GF//BE,∵AC⊥AB,
勾股定理分别求出PB=PD=10然后体积V=6*6*8/3=96Spab=Spad=24Spcb=Spcd=30所以表面积=24+24+30+30+36=144
取PD的中点O,连接AO、NO、MNPA⊥平面ABCD,则PA⊥CD,矩形ABCD中,AD⊥CD,可知CD⊥平面PAD可知CD⊥AO,而PA=AD,PA⊥AD,则在等腰直角三角形PAD中,斜边上的中线
好像不是AB⊥CD吧以A为原点ABADAP分别为xyz轴设AB=aAD=bPA=cP(0,0,c)B(a,0,0)E(0,b/2,c/2)C(a,b,0)向量PB=(a,0,-c)向量AE=(0,b/
1连接BD交AC于F,则在三角形pbd中,E,F,是中位线,PB//EF,所以PB平行平面AEC2过D做AB的垂线交AB于G,则DG=根号3,连接PG,并连接PG的中点H和E,HE=根号3/2,HE垂
取AB的中点E,连接DE在△ADE中,角DAB=60,AB=2AD所以△ADE为等边三角形(等边对等角)同时可推出角EDB为30所以角ADB为90又因为PD垂直于底面ABCD所以BD垂直PD又因为BD
1.连接AC,BD交于点O连接FO因为F,O分别为PC,AC中点所以FO平行PA因为FO在平面BFD内,且PA不在平面BFD内所以PA平行于平面BFD2.这道题有空间直角坐标系做,我在这里就不具体写了
PA⊥平面ABCD,PA⊥AD,PA⊥AB,PA=AB=AD=a,则△PAB和△PAD均是等腰RT△,PB=PD=√2a,AB=BC,〈ABC=60°,△ABC是正△,S△ABC=√3a^2/4,V三
(1)因PA垂直底面ABCD,所以PA垂直BD又因底面ABCD为正方形,所以BD垂直ACPA、AC是在平面PAC内因此BD垂直平面PAC(2)45度PA垂直底面ABCD角PAD为90度又因PA=AB,
您好!证明:设AC交BD于点O,取CD的中点Q点.在三角形PAC中,ON是中位线,所以ON//PA,且PA=1/2PA.已知PA垂直于矩形ABCD所在平面,所以PA垂直CD,所以ON垂直CD;OM是三
这道题用到二平面垂直的判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面垂直.四边形ABCD为菱形,所以对角线AC⊥BD由PA⊥面ABCD,BC∈面ABCD得PA⊥BD∴BD⊥面PAC∵PC∈
(1)因为PA⊥面ABCD,所以PA⊥BC.又AB=2=BC,∠ABC=60度,可知AM⊥BC,故BC垂直平面AMN.(2)这太容易了,1/3Sh即可.(3)E为PD中点,PE=根号2.向量法总该会把
有三对面面垂直:面PAB⊥面ABCD面PAD⊥面ABCD面PAB⊥面PAD二面角B-PC-D的平面角大小大小不定,与四棱锥的高PA和正方形边长的比值相关.设PA=h,正方形边长为a则PB²=