过点p(1.-1)作圆x² y²-2x-2y 1=0的切线求切线方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:43:28
具体步骤你自己写,我给你思路:双曲线的渐近线与曲线没有交点,所以直线是过P(0,1),斜率和渐近线中K
亲,给好评我发给你答案!
设第一个圆圆心为C(-1,-1),第二个圆圆心为D(2,3),P的坐标为(X,Y).根据切线定理∠PAC=∠PBD=90°由勾股定理得PA^2=PC^2-AC^2而PC^2=(X+1)^2+(Y+1)
(1)Q(1,13/4)到抛物线C1的准线:y=-p/2的距离是13/4+p/2=7/2,p=1/2,设抛物线C1:x^2=y上的动点P(t,t^2),过P作圆C2:x^2+(y-3)^2=1(改题了
p为直线x+y+3=0上任意一点即y=-x-3设P(x,-x-3)S△AOP=|OA|*|AP|/2=|AP|/2S四边形PAOB=2*S△AOP=|AP|=√(OP²-OA²)=
令A(x1,y1),B(x2,y2),P(xo,yo)由切线公式可得直线PAx1x+y1y=1,直线PBx2x+y2y=1所以P满足x1xo+y1yo=1和x2xo+y2yo=1所以可得直线AB的方程
x+y-2√2=0,x²+y²=1的圆心O(0,0),半径r=1设点P的坐标为(x,2√2-x)那么|OP|=√[x²+(2√2-x)²]=√(2x²
过点A(1,1)作直线L与XY轴的正方向分别交于PQ两点,当这条直线的斜率K=-1时,四边形PRSQ面积最小值为3.6解题思路:一、根据过点A(1,1)作直线L与XY轴的正方向分别交于PQ两点,先设该
(i)圆心坐标C(1,0)K(OC)=(2-0)/(2-1)=2方程是:y-0=2(x-1)即y=2x-2(ii)当弦AB被点P平分时圆心C与点P的连线必然与AB垂直所以得到AB的斜率k=-1/2y-
一般地,过圆x²+y²=r²外一点P(x₀,y₀)作圆的两条切线,若切点为Q、R,则直线QR的方程为x₀x+y₀y=r
p坐标,《x,2x》则po=2故x²+(2x-4)²=4知x=op设cd的直线方程为y=k(x-1)+2,则方程组y=k(x-1)+2,x²+(y-4)²=1,
设l2的方程为x+y+m=0,易知l2是圆的切线,直线l1到圆心的距离为|3+4+1|/√2=4√2,距离就是4√2-2,而两条平行线的距离|m-1|/√2=4√2-2,解出m就可以啦~再问:不好意思
设圆心为O(3,0),PO与MN交于E,则PO²=PM²+1,MN=2ME=2PM*OM/PO=2PM/PO=2√(PO²-1)/PO=2√[(PO²-1)/P
依题意,可知圆圆心为(-1,0),半径为1,设圆心为O,交点分别为A和B,则OP=√((-1-0)^2+(0-2)^2)=√5在Rt△OAP中,sin∠OPA=OA/OP=√5/5,由勾股定理,可得c
1)所求直线垂直于PC,PC方程:y-yp=(yc-yp)(x-xp)/(xc-xp)【两点式】=>y-2=(0-2)(x-2)/(1-0)=>y=-2x+6∴kpc=-2=>kab=1/2【kab=
(i)圆心坐标C(1,0)K(OC)=(2-0)/(2-1)=2方程是:y-0=2(x-1)即:y=2x-2(ii)当弦AB被点P平分时圆心C与点P的连线必然与AB垂直所以,AB的斜率可以知道了k=-
1.X方+Y方-2X-8=0标准方程(x-1)^2+y^2=9P(2,2)代入(x-1)^2+y^2=5
(i)圆心坐标C(1,0)K(OC)=(2-0)/(2-1)=2方程是:y-0=2(x-1)即y=2x-2(ii)当弦AB被点P平分时圆心C与点P的连线必然与AB垂直所以得到AB的斜率k=-1/2y-
解题思路:将y=m²代入到函数解析式中,求出A,B;C,D坐标,从而得到AB,CD长度,再求比值解题过程: