连续 可微 偏导数存在的关系图形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:46:18
极限 连续 导数的关系是什么?

极限,连续,可导依次为必要非充分条件.即:有极限不一定连续,连续则极限一定存在.

函数连续,函数可微,函数可导,偏导数存在,偏导数连续之间的关系,最好有例子证明,

对于一元函数函数连续不一定可导如y=|x|可导一定连续即连续是可导的必要不充分条件函数可导必然可微可微必可导即可导是可微的必要充分条件对于多元函数偏函数存在不能保证该函数连续如xy/(x^2+y^2)

函数,极限,导数,连续,微分,积分的关系?

一个数学体系!找就能看明白了!

简述极限连续导数微分之间的关系

极限和连续的关系:极限在点X0存在且它的值等于在该点的函数值那就是在该点连续的.否则在该点就不连续.极限不存在则必不连续.导数就是求极限的过程,求△y/△x当△x趋于0时的极限在一维函数的情况下以下结

微积分 极限 导数 连续的关系

1.例如Y=sinx/x显然X=0处无定义是不连续的但是X逼近0的继续为1(连续的时候必须函数值与极限值相等)2.是的3.通过教材的安排就可以看出在学习极限的基础上学习连续和可导函数在某个点的邻域内连

高等数学一元导数一元函数的导数连续与R上可导的关系?(图形上,直观上)如何理解?可导,导函数不一定连续吧?能不能帮助举个

一元函数的导数连续,既然说导数连续,那就必然可导,否则何来导数?--------------------------------------------------------------------

可导与连续之间的关系【极限存在】:左右极限存在且相等连续:【极限存在】就连续可导:【极限存在】+极限值=f(x0)lim

【极限存在】:左右极限存在且相等(正确)连续:【极限存在】就连续.(错误)需要附加且等于该点函数值f(x+Δx)-f(x)可导:【极限存在】+极限值=f(x0).应该为lim(Δx→0)——————存

高数:二元函数全微分存在和偏导数连续和连续和可偏导得关系

偏导数连续那么全微分存在再答:全微分存在,那么函数连续而且可偏导

偏导数存在和偏导数连续是什么关系 高数

连续就一定存在,存在不一定连续啊

偏导数存在且连续,可微,函数连续,偏导数存在,这四个有什么关系?

可微必定连续且偏导数存在连续未必偏导数存在,偏导数存在也未必连续连续未必可微,偏导数存在也未必可微偏导数连续是可微的充分不必要条件

二元函数的二阶偏导数存在与函数在该点连续的关系

没有必然联系.f(x,y)=(x^2y)/(x^4+y^2),不在原点,f(0,0)=0.容易计算偏f/偏x=(2xy^3-2yx^5)/(x^4+y^2)^2,不在原点,偏f/偏x(00)=0,可以

能不能帮忙总结下可导、极限存在、函数连续、偏导数连续、存在等的概念、关系和存在条件呢?我不太理解

①如果全微分存在,则极限存在、函数连续、偏导数存在;反之,后3者推不出全微分存在.②如果函数的偏导数存在,并且偏导数连续,则全微分存在.③函数连续则极限存在;反之,极限存在时函数不一定连续.④函数连续

多元函数偏导数和函数连续是什么关系?函数连续可以对出其在这点各方向偏导数存在且连续吗

楼上说的是一元函数的结论,不适用于多元函数.多元函数连续不能推出偏导数存在,反之偏导数存在也不能推出连续.偏导数存在且偏导数连续==>可微==>连续(这个连续是指没求导的函数).这个是正确的

导数存在为什么不能说明导数连续?求详解.我的看法 当某点导数存在时,说明原函数在该点连续,且

定义一个分段函数:f(x)=x^2*sin(1/x),(x≠0)=0,(x=0)这个函数,它在定义域的每一点都可导,但是它的导数不连续.参考:http://zhidao.baidu.com/link?

关于多元函数连续可微与偏导数连续的关系

连续可微的意思是可微并且导函数连续,和偏导数连续是一个意思,和可微不是一个意思,个人感觉连续可微是个没什么意义的概念,一些教材上盲目添加的.

极限,连续,偏导存在,偏导数,可微之间关系

偏导数Fx,Fy在点(x0,y0)连续(1)z=f(x,y)在点(x0,y0)可微且dz=Adx+Bdy(2)f(x,y)在点(x0,y0)连续(3)z=f(x,y)在点(x0,y0)可偏导,且Fx=

导数、连续、微分之间有什么关系?

导数和微分是一样的,某函数在某点有导数,那也一定有微分而连续比较弱,如果函数在某点有导数,则必然连续,但连续不一定有导数,这是因为可能有折线尖点那样的连续情况.所以连续《--导数《-》微分

二元函数偏导数存在且 偏导数连续,那么这个函数是不是就是连续的?为什么?

首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函

多元函数可微,偏导数存在之间的关系

可微则偏导数存在偏导数存在不一定可微只有偏导数存在且连续才能推出可微给你个偏导可微和函数连续的关系偏导数存在并且偏导数连续==>可微==>函数连续偏导数存在并且偏导数连续==>可微==>偏导数存在这个

偏导数存在和偏导数连续的区别

这其实是连续的一个证明问题左右极限相等,则偏导存在.但此时的极限不一定等于该点的导数值,明白吗?证明偏导数连续,则是要证明左右极限相等并且要等于该点的偏导数值.也就是说:在那点的偏导数等于左右极限这句