连续 可微 偏导数存在的关系图形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:46:18
极限,连续,可导依次为必要非充分条件.即:有极限不一定连续,连续则极限一定存在.
对于一元函数函数连续不一定可导如y=|x|可导一定连续即连续是可导的必要不充分条件函数可导必然可微可微必可导即可导是可微的必要充分条件对于多元函数偏函数存在不能保证该函数连续如xy/(x^2+y^2)
一个数学体系!找就能看明白了!
极限和连续的关系:极限在点X0存在且它的值等于在该点的函数值那就是在该点连续的.否则在该点就不连续.极限不存在则必不连续.导数就是求极限的过程,求△y/△x当△x趋于0时的极限在一维函数的情况下以下结
1.例如Y=sinx/x显然X=0处无定义是不连续的但是X逼近0的继续为1(连续的时候必须函数值与极限值相等)2.是的3.通过教材的安排就可以看出在学习极限的基础上学习连续和可导函数在某个点的邻域内连
一元函数的导数连续,既然说导数连续,那就必然可导,否则何来导数?--------------------------------------------------------------------
【极限存在】:左右极限存在且相等(正确)连续:【极限存在】就连续.(错误)需要附加且等于该点函数值f(x+Δx)-f(x)可导:【极限存在】+极限值=f(x0).应该为lim(Δx→0)——————存
偏导数连续那么全微分存在再答:全微分存在,那么函数连续而且可偏导
连续就一定存在,存在不一定连续啊
可微必定连续且偏导数存在连续未必偏导数存在,偏导数存在也未必连续连续未必可微,偏导数存在也未必可微偏导数连续是可微的充分不必要条件
没有必然联系.f(x,y)=(x^2y)/(x^4+y^2),不在原点,f(0,0)=0.容易计算偏f/偏x=(2xy^3-2yx^5)/(x^4+y^2)^2,不在原点,偏f/偏x(00)=0,可以
①如果全微分存在,则极限存在、函数连续、偏导数存在;反之,后3者推不出全微分存在.②如果函数的偏导数存在,并且偏导数连续,则全微分存在.③函数连续则极限存在;反之,极限存在时函数不一定连续.④函数连续
楼上说的是一元函数的结论,不适用于多元函数.多元函数连续不能推出偏导数存在,反之偏导数存在也不能推出连续.偏导数存在且偏导数连续==>可微==>连续(这个连续是指没求导的函数).这个是正确的
定义一个分段函数:f(x)=x^2*sin(1/x),(x≠0)=0,(x=0)这个函数,它在定义域的每一点都可导,但是它的导数不连续.参考:http://zhidao.baidu.com/link?
连续可微的意思是可微并且导函数连续,和偏导数连续是一个意思,和可微不是一个意思,个人感觉连续可微是个没什么意义的概念,一些教材上盲目添加的.
偏导数Fx,Fy在点(x0,y0)连续(1)z=f(x,y)在点(x0,y0)可微且dz=Adx+Bdy(2)f(x,y)在点(x0,y0)连续(3)z=f(x,y)在点(x0,y0)可偏导,且Fx=
导数和微分是一样的,某函数在某点有导数,那也一定有微分而连续比较弱,如果函数在某点有导数,则必然连续,但连续不一定有导数,这是因为可能有折线尖点那样的连续情况.所以连续《--导数《-》微分
首先偏导数连续是可微的充分条件,偏导数存在是可微的必要条件,也就是说存在一些偏导数不连续的函数但仍可微,也存在一些偏导数存在的函数但不可微,而可微一定连续(连续不一定可微),所以从偏导数存在是得不出函
可微则偏导数存在偏导数存在不一定可微只有偏导数存在且连续才能推出可微给你个偏导可微和函数连续的关系偏导数存在并且偏导数连续==>可微==>函数连续偏导数存在并且偏导数连续==>可微==>偏导数存在这个
这其实是连续的一个证明问题左右极限相等,则偏导存在.但此时的极限不一定等于该点的导数值,明白吗?证明偏导数连续,则是要证明左右极限相等并且要等于该点的偏导数值.也就是说:在那点的偏导数等于左右极限这句