p是△abc任意一点连接bp,cp比较角bpc和角a的大小
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:28:14
(1)证明:∵△ABC是等腰三角形,CH是底边上的高线,∴AC=BC,∠ACP=∠BCP.又∵CP=CP,∴△ACP≌△BCP.∴∠CAP=∠CBP,即∠CAE=∠CBF.(2)证明:∵在△ACE与△
如图所示,过点P作MN//BC,分别交AB,AC于M,N过点P作XY//AC,分别交BA,BC于X,Y过点P作UV//AB,分别交CB,CA于U,V则易知△PVN,△PMX,△PUY都是等边△∵PD,
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
证明:如图,延长PD到M,使DM=PD,连接BM、CM.∵AD是△ABC的中线,∴BD=CD,∵DM=PD,∴四边形BPCM是平行四边形,∴BP∥MC,即PF∥MC,∴AF:AC=AP:AM,同理AE
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
延长BP交AC于M,两次应用“三角形两边之和大于第三边”即可得证.再问:能说详细点么再答:AM+AB>BM=BP+PM,PM+MC>PC两式两边分别相加得AM+MC+AB>PB+PC,即AB+AC>P
延长CP交AB于E,在△AEC中AE+AC>EC,即AE+AC>EP+PC在△BEP中BE+EP>BP上面二式相加,AE+AC+BE>PC+PBPC+PB<AB+AC
△PBQ的形状是等边因为∠PBQ=60BQ=BP
在△PCD中,∠1=∠2+∠PCD,∴∠1>∠2.故答案为:∠1>∠2.
三角形PBC
辅助线+代数法:做辅助线:AO垂直于BC于O点.AC^2=AO^2+OC^2(因为直角三角形,全部过程几乎都是因为直角哈)然后AC^2=AO^2+(OP+PC)^2=AO^2+OP^2+2OP*PC+
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
从A向BC作垂线,垂点为D,AB^2=BD²+AD^2AP^2=PD^2+AD^2所以,AB^2-AP^2=BD²-PD^2=(BD+PD)(BD-PD)=BP乘CP7月Y4
既然你第一问已经处理了,就不再做了△ABC是等腰三角形,AC=BC,CH是底边上的高,所以也是底边的中线因此CH是AB的垂直平分线,P在CH上,所以PA=PB已证∠CAE=∠CBF在△PAF和△PBE
辅助线+代数法:做辅助线:AO垂直于BC于O点.AC^2=AO^2+OC^2(因为直角三角形,全部过程几乎都是因为直角哈)然后AC^2=AO^2+(OP+PC)^2=AO^2+OP^2+2OP*PC+
证明:连接PM,PN,∵MN垂直平分AP,∴AM=MP,AN=PN,又MN为公共边,∴△AMN≌△PMN(SSS),∴∠MPN=∠BAC=60°,∵∠BPM+∠CPN=120°,∠BPM+∠BMP=1
证明:作AD垂直于BC交BC于D,因AB+AC,则BD=CD且有AB^2-AD^2=BD^2AP^2-AD^2=PD^2二式相减,有AB^2-AP^2=BD^2-PD^2=(BD+PD)*(BD-PD
证明:考察三角形ACP和三角形ABP,由余旋定理AC^2=AP^2+PC^2-2AP*PC*cos∠APC①AB^2=AP^2+BP^2-2AP*PB*cos∠APB②因为∠APC和∠APB互补,所以