p是椭圆4 x+3 y=1上的点 f1和f2是该椭圆的焦点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:33:28
若点o和点F分别为椭圆X平方/4+y平方/3=1的中心和左焦点,点p为椭圆上任意一点、则op向量*FP向量的最大值是

由方程得:O(0,0),F(-1,0)设P点坐标(X,Y)(-2≤X≤2,-√3≤Y≤√3)则3X²+4Y²=12向量OP=(X,Y),FP=(X+1,Y)∴OP乘FP=X

f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最值

a^2=4,b^2=3,c^2=1,左焦点为(-1,0),取左焦点为F',则PF+PF'=2a=4,PF=2a-PF‘,所以PA+PF=PA+2a-PF'=2a+(PA-PF'),对于三角形PAF'而

已知P(x,y)是椭圆x²/100+y²/36=1上的点,求3x+4y 的最大值与最小值

证法一:依椭圆参数方程,可设x=10cosθ,y=6sinθ.∴3x+4y=30cosθ+24sinθ=6√41sin(θ+φ)(tanφ=5/4)∵sin(θ+φ)∈[-1,1],故所求最大值为:6

已知P(x,y)是椭圆x^2/100+y^2/36=1上的点,求3X+4y的最大值与最小值

参数方程x=10cosθy=6sinθ3x+4y=30cosθ+24sinθ=6(5cosθ+4sinθ)=6√41sin(θ+α)最大值为6√41,最小值为-6√41.再问:这一步6(5cosθ+4

已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA

设:P(X,Y)a=6,c=√(36-20)=4,A(-6,0),F(4,0)向量AP=(X+6,Y),向量FP=(X-4,Y)∵PA垂直PF,∴(X+6)(X-4)+Y²=0===>Y&#

已知 F1F2是椭圆 X^2/4+y^2=1的两个焦点,P 是椭圆上的点

答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e

已知椭圆X^2÷4+Y^2÷3=1内有一点P(1,-1),F是椭圆的右焦点,若在椭圆上有一点M,使|MP|+2|MF|的

a^2=4,b^2=3则c^2=1e=c/a=1/2则MF/M到右准线距离=1/2M到右准线距离=2MF右准线x=a^2/c=4P到右准线距离=4-1=3作PQ垂直右准线,则当M是PQ和椭圆交点时距离

f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最小值

过P向准线做垂线,焦点为E.设PF到准线PE得距离为d则PF/d=e=1/2即PF=d/2PF+PA最小就是PE+PA最小当PAE三点共线时最小PA+PF=PA+PE/2此时p(2根号6,1)PA=(

设p是椭圆x^2/25+y^2/9=1上的一点动点,F是它的左焦点,且OM=1/2(OP+OF),OM=4,求p到该椭圆

这个题用椭圆的参数方程来求,事半功倍设p(5cost,3sint)f(-4,0)om=1/2(5cost-4,3sint)|om|^2=1/4[(5cost-4)^2+9(sint)^2]=16解得c

1.若点O和点F分别为椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量op乘向量FP的最大值

1、op(x,y),FP(x+1,y),向量OP*向量FP=x(x+1)+y^2,把y^2=3-3x^2/4,那么向量OP*向量FP=x^2/4+x+3,由于x大于-2小于2,那么当x=2时取最大值,

若点O和点F分别为椭圆(x^2/4)+(y^2/3)=1的中心和左焦点,点P为椭圆上的任意一点则向量OP*向量FP的最大

op(x,y),FP(x+1,y),向量OP*向量FP=x(x+1)+y^2,把y^2=3-3x^2/4,那么向量OP*向量FP=x^2/4+x+3,由于x大于-2小于2,那么当x=2时取最大值,即向

若点O与点F分别为椭圆x²/4+y²/3=1的中心与左焦点,点P为椭圆上任意的一点,则OP̶

a=2,b=√3,c=1,左焦点坐标为(-1,0),当P在右端点时乘积最大,|PF|=1+2=3,|OP|=2,|OP|*|FP|=2*3=6.

一:若O和F点分别是椭圆x^2/4+y^2/3=1的中心和左焦点,点P为椭圆上的任意一点,则向量OPX向量FP的最大值是

1、当P点在右顶点时二向量积有最大值,c=√(4-3)=1,OP•FP=|a+c|*|a|*cos0°=|(2+1)|*2=6.2、c^2=a^2-b^2=1,c=1,直线方程为:y=2(

一道椭圆的题F是椭圆x^2/16+y^2/12=1的左焦点,点P(-2,根号3)在椭圆内,点M在椭圆上,若使|PM|+2

由椭圆的方程可知其左焦点坐标F为(-2,0)点P横坐标与F相同说明在其上方要使得|PM|+2|PF|最小即让这两段线段共线时,取最短2|PF|=|PF|+|PoF|其中的Po为P关于X轴的对称点即要使

点A,B分别是椭圆X^2/36+Y^2/20=1长轴的左,右端点 ,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,P

由题a=6,b=2√5,c=4A(-6,0)B(6,0)F(4,0)设P(x,y)其中y>0向量(PA·PB)=0得(-6-x,-y)·(4-x,-y)=0即x^2+2x+y^2-24=0.(1)联立

P(x,y)是椭圆上x^2/4+y=1上的点,F1,F2是椭圆的左右焦点.求x+y的最值,xy的最值,y-2/x+3的最

设x=2cosθ,y=sinθ,则x+y=2cosθ+sinθ=√5sin(θ+φ),所以最大值是√5,最小值是-√5xy=2sinθcosθ=sin2θ,所以最大值是1,最小值是-1第三题,(y-2

已知P(x,y)是椭圆x^2/25+y^2/16=1上的一个动点,求4x/5+3Y/4的最大值

令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=

已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,P

(1)P是椭圆与以AF为直径的圆的交点(2)先假设M坐标,求出来.在假设一个半径为r,以M为圆心的圆.圆的方程与椭圆联立,消去y,令x的方程deita为零.求出r.即为所求

已知点A(1,2)在椭圆3x^2+4y^2=48内,F(2,0)是椭圆的右焦点,在椭圆上求一点P,使得|PA|+2|PF

3x^2+4y^2=48,x^2/16+y^2/12=1a=4,b=2√3c=2.e=c/a=1/2根据椭圆第二定义,椭圆上的点到焦点距离与对应准线距离之比为离心率得2|PF|就是P到右准线x=a^2

点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于

依照题意,先求出A,B,F坐标:A(-6,0);B(6,0);F(4,0)设P(x,y);PA垂直于PF,所以kPA*kPF=-1kPA=y/(x+6);kPF=y/(x-4);因此y^2+(x+6)