P是椭圆x² 4 y² 3=1上的一点,F1,F2为椭圆的左.右焦点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:30:43
a=5,b=4按定义,|PF1|+|PF2|=2a=10
设P(2cosa,sina)2x+3y=4cosa+3sina=5sin(a+b),其中tanb=3/4,利用辅助角公式所以当sin(a+b)=1的时候,2x+3y有最大值5(x-1)²+y
解题思路:本题考查直线与椭圆的位置关系,考查椭圆的切线方程,考查面积的计算,考查学生分析解决问题的能力,有难度.解题过程:
以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c
a^2=4,b^2=3,c^2=1,左焦点为(-1,0),取左焦点为F',则PF+PF'=2a=4,PF=2a-PF‘,所以PA+PF=PA+2a-PF'=2a+(PA-PF'),对于三角形PAF'而
证法一:依椭圆参数方程,可设x=10cosθ,y=6sinθ.∴3x+4y=30cosθ+24sinθ=6√41sin(θ+φ)(tanφ=5/4)∵sin(θ+φ)∈[-1,1],故所求最大值为:6
参数方程x=10cosθy=6sinθ3x+4y=30cosθ+24sinθ=6(5cosθ+4sinθ)=6√41sin(θ+α)最大值为6√41,最小值为-6√41.再问:这一步6(5cosθ+4
首先做出图来看一下,由于此椭圆的对称性,可知,当x,y均大于0的时候,暨P点在第一象限的时候,z可以去到最大值,同样z为正数,z最大时,z平方也最大,z平方=x平方+4乘以y的平方+4xy.由椭圆式子
1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则
答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e
将a.b看成已知量连接PF2则PF2等于2a-PF1=2a-4再根据中位线定理OM=PF2/2=a-2
设A(x0,y0)B(x0,-y0)PB:x=[-(x0-4)/y0]y+4代入椭圆利用韦达定理点E:y=3y0/(2x0-5),x=(5x0-8)/(2x0-5)直线AE:y-3y0/(2x0-5)
过P向准线做垂线,焦点为E.设PF到准线PE得距离为d则PF/d=e=1/2即PF=d/2PF+PA最小就是PE+PA最小当PAE三点共线时最小PA+PF=PA+PE/2此时p(2根号6,1)PA=(
1、当P点在右顶点时二向量积有最大值,c=√(4-3)=1,OP•FP=|a+c|*|a|*cos0°=|(2+1)|*2=6.2、c^2=a^2-b^2=1,c=1,直线方程为:y=2(
椭圆:x²/4+y²=1设点P(2cosa,sina)点到直线距离d=|4cosa+3sina-8|/√(2²+3²)=|4cosa+3sina-8|/√13令
设x=2cosθ,y=sinθ,则x+y=2cosθ+sinθ=√5sin(θ+φ),所以最大值是√5,最小值是-√5xy=2sinθcosθ=sin2θ,所以最大值是1,最小值是-1第三题,(y-2
椭圆上的点到两焦点的距离和是定值嘛,所以第一问可以用基本不等式算出.第二个就要设点,设P坐标是(a,b),两向量分别是(a-√3,b)和(a+√3,b),点乘就等于aˆ2-3+bˆ
P(x,y)是椭圆x²/4+y²/9=1上的一点,则Z=2x+y的最大值是多少设x=2cost,y=3sint,则z=4cost+3sint=4[cost+(3/4)sint]【设
设A(x0,y0)B(x0,-y0)PB:x=[-(x0-4)/y0]y+4代入椭圆利用韦达定理点E:y=3y0/(2x0-5),x=(5x0-8)/(2x0-5)直线AE:y-3y0/(2x0-5)
令x=5cosay²/16=1-cos²a=sin²a所以y=4sina所以4x/5+3y/4=4cosa+3sina=5sin(a+z)其中tanz=4/3所以最大值=