r(AA^T)=r(A^TA)=r(A)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:02:11
用字母组单词s a h r e l e v a ta s p ts u o t s r e r f t a r es u

1share一份,部分,份额,分担量,股份,比重2valet男仆;随从3past过去的,刚结束的4trousers裤子,长裤5after在...之后6trousers裤子,长裤7strong强壮的,健

设A={1,2,3},给定A上二元关系R={,,},求r(R),s(R)和t(R).

(R)={,,,,},s(R)={,,,,},t(R)={,,,,}

已知向量abc满足a+b+c=0,且c与a-b所成角为120°,|c|=2倍根号3,则当t∈R时,|ta+(1-t)b|

设向量BC=a,CA=b,AB=c,|AB|=|c|=2√3,c=AB与a-b=BC+AC所成角为120°,取AB的中点D,则∠BDC=120°,延长BC至E,使CE=BC,在直线AE上取点M,使(1

设A为实矩阵,证明r(A^TA)=r(A)

参考这个:其中A'即A^T,这是转置矩阵的另一个记法.

设a为n维列向量,且a∧Ta=1,矩阵A=E-aa∧T,证明A的行列式等于0

只要证明0是特征值即可.经济数学团队帮你解答.请及时评价.谢谢!再问:问一下再问:a为n维列向量,a∧Ta=1,aa∧T会等于E吗再答:一般不会,r(aa^T)

设A为n阶方阵,AA=A ,证明R(A)+R(A-E)=n

(1)A^2=A,所以A(A-E)=0所以r(A)+r(A-E)=r(A+E-A)=r(E)=n所以r(A)+r(A-E)=n再问:R(A)+R(B)>=R(A+B)这怎么得来的?再答:A的所有列向量

设A是m*n实矩阵,证明:R(A'A)=R(AA')=R(A)

这类问题可用证明齐次线性方程组同解的方法显然,AX=0的解都是A'AX=0的解.反之,若X1是A'AX=0的解则A'AX1=0所以X1'A'AX1=0故(AX1)'(AX1)=0所以有AX1=0即A'

线性代数,已知A是2n+1阶矩阵正交矩阵,即AA^T=A^TA=E,证明E-A^2的行列式为零

|A(A^T-E^T)|=|A||A^T-E^T|=|A||(A-E)^T|=|A||A-E|注:知识点|A^T|=|A|.

n阶矩阵,为什么AA*=|A|E=O=>r(A)+r(A*)≤n?

因为AA*=|A|E=O所以A*的列向量都是AX=0的解所以A*的列向量可由AX=0的基础解系线性表示所以r(A*)

矩阵证明题:若n阶方阵满足AA^T=E,设a是n维列向量,a^Ta=/0矩阵A=E-3aa^T.

一个更正,问题中的“a=2/3”似乎有误,应为“a^Ta=2/3”首先可知A是一个对称阵,那么AA^T=E就等价于(E-3aa^T)(E-3aa^T)=E,展开就得E-6aa^T+9(a^Ta)(aa

线性代数!设a为n维列向量,且a^Ta=1,令A=E-aa^T,其中E是n阶单位矩阵,

R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E

已知n阶矩阵A的秩为r,Rn上的线性变换T(a)=Aa,任意a属于Rn,则T的核空间Ker(T)的维数是? 最好有讲解的

a属于Ker(T)的充要条件是Aa=0即a是Ax=0的解.而Ax=0的基础解系含n-r(A)个向量所以Ker(T)的维数是n-r(A).

设R是集合A={a,b,c,d}上的二元关系,R={,,,}求r(R),s(R),t(R)

(R)={,,,,,,,},s(R)={,,,,,,},t(R)={,,,,,,,,,,,}

A是m*n矩阵 则r(A)=r(A^TA) 怎么证明

命题需要A是实矩阵才成立证明:(1)设X1是AX=0的解,则AX1=0所以A^TAX1=A^T(AX1)=A^T0=0所以X1是A^TAX=0的解.故Ax=0的解是A^TAX=0的解.(2)设X2是A

设A为n阶实矩阵,A^T为A转置矩阵,证明:R(A)=R(A^TA)

我们利用这个性质:若A、B均为n阶矩阵,那么必有r(AB)≤min{r(A),r(B)}的推广定理,这在北大版高代中提到过.则r(A)=r(AE)=r(A*A^T*A)≤r(A^T*A)≤r(A)(这

设A是m*n实矩阵,若R=(A^TA)=5,则R(A)=?

R(A)=5.因为R(A^TA)=R(A),下面简单证明一下:任何满足Ax=0的x向量,必然满足A^TAx=0,所以R(A^TA)=R(A).所以只能有R(A^TA)=R(A).

线性代数问题 设a为n维列向量,且a∧Ta=1,矩阵A=E-2aa∧T,证明A是正交

a^Ta=(E-2aa^t)^T(E-2aa^t)=(E-2aa^t)(E-2aa^t)=E-2aa^t-2aa^t+4aa^taa^t=E-4aa^t+4a(a^ta)a^t=E-4aa^t+4aa

已知A^TA为对称矩阵,R(A)=n,对任意的n维向量a不等于0,有a^T(A^TA)a=llAall^2>0,这是怎么

这个很简单:跟着我的思路来第一你要知道关于求转置,有一个脱衣原则.即(AB)^T=(B^T)(A^T),语言描述是AB的转置等于B的转置乘以A的转置,注意是从后往前脱衣,脱衣后B在前A在后.其中A,B