随机变量x~n(1,2²),求p(1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:38:21
随机变量X~N(0,1),Y~U(0,1),Z~(5,0.5)且X、Y、Z相互独立,求随机变量U=(2X+3Y)(4Z-

U=(2X+3Y)(4Z-1)=8XZ-2X+12YZ-3YE(U)=8E(X)E(Z)-2E(X)+12E(Y)E(Z)-3E(Y)//:E(X)=0,E(Y)=0.5,E(Z)=5;//:N(5,

设随机变量X~N(0,1),N(0,1)且X,Y相互独立 求 E[X^2/(X^2+Y^2)]

瀑布汗.(X^2+Y^2)/(X^2+Y^2)=1E(1)=1再问:为什么E(1)=1?我知道(X^2+Y^2)/(X^2+Y^2)=1得出e(1)但为什么E(1)=1?再答:常数的期望等于自己,这题

设随机变量X与Y相互独立,N(1,2),(0,1),求随机变量Z=X-Y的分布,并求P(X>Y )的概率

N(1,3)P(X>Y)=P(X-Y>0)=P(Z>0)又T=Z-1/根号3~N(0,1)则原式=P(T>-1/根号3)查标准正太分布表可得到概率再问:Z~N(1,1)不是这样?

高数题设随机变量Χ~N(μ,σ^2),求E(1X—μ1).

http://hi.baidu.com/zjhz8899/album/item/7e114b1fc175972c40341712.html

设随机变量x~N(0,1),y=2x+1,则y~N( ),求详解,

用正态分布特性计算.经济数学团队帮你解答.请及时评价.

概率论与数理统计 设随机变量X~N(0,1)求,E(X^2)

D(x)=E(X^2)-[E(X)]^2=1E(X^2)=1

随机变量X~N(-3,1),N(2,4),且X、Y相互独立,令Z=X-2Y+5,求X,Y的概率密度

首先,设c为常数,则E(c)=c,D(c)=0.然后要知道X~N(-3,1)的意思是X服从期望为-3,方差为1的正态分布,即E(X)=-3,D(X)=1.同理,E(Y)=2,D(Y)=4.所以:E(Z

已知随机变量X服从正态分布N(0,1),求E(X^2)、E(X^3)与E(X^4)?

X~N(0,1)则Y=X^2~~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^3)=0.pdf概率密度函数关于y对称.当然,也是可以像沙发同志那样做.不过有点

随机变量x—N(-1,16),求

y=(x-(-1))/4P(2≤x≤5)=P((5+1)/4)-P((2+1)/4)=P(1.5)-P(0.75)P(|x|>3)=P(y>0.75)+P(x<-0.5)=P(0.75)+P(0.5)

求一个概率学的问题.设随机变量X~N(3,2²),求 (1) P(22);

a~N(3,2²)X=2a+3【a即西格玛,标准正态分布】1、P(2

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

设随机变量x~N(0,1),求p(x

x~N(0,1),意思是,x服从标准正态分布查表得:p(x

随机变量X~N(0,1),求下列随机变量Y=X^2的概率密度函数

思路是:先求解Y的分布函数,用定义求:即FY(y)=Py(Y=0,否则为零变形一下得到;FY(y)=PX(-y^0.5=

设随机变量X与Y独立,N(μ1,σ1),N(μ2,σ2),求:随机变量函数Z=XY的数学期望与方差

由于X与Y独立,故期望E(Z)=E(XY)=E(X)E(Y)=μ1μ2;方差D(Z)=D(XY)=E(XY*XY)-E(XY)*E(XY);E(XY*XY)=E(X^2*Y^2),X^2与Y^2也独立

设随机变量X〜N(0,1),求Y=2x平方+1的概率密度函数.

当y≥1时FY(y)=P{Y≤y}=P{2X²+1≤y}=P{X≤√[(y-1)/2]}=FX(√[(y-1)/2])fY(y)=dFY(y)/dy=dFX(√[(y-1)/2])/dy=1

已知随机变量X~N(4,1) 求P(x

=1/2.画一下正态分布的图.u就是对称轴,小于U的概率当然是总的一半,就是1/2建议多看看概念.要看懂

设随机变量X~N(0,1),求Y=X^2的概率密度

F(y)=P(Y再问:后面那一串上角标是怎么个意思?再答:具体点

考研 设随机变量X~N(0,1),N(0,1)且X,Y相互独立 求 E[X^2/(X^2+Y^2)]

可以这么做:因为X,Y相互独立,所以E[X^2/(X^2+Y^2)]=E[Y^2/(X^2+Y^2)].而E[X^2/(X^2+Y^2)]+E[Y^2/(X^2+Y^2)]=E[(X^2+Y^2)/(

若随机变量X~N(1,4),Y~N(2,1),且X,Y相互独立,试求随机变量Z=2X-Y+1的概率密度

一个二维正态分布的边缘分布的和总是正态分布.特别的,两个独立正态分布的和总是正态分布.由X~N(1,4),有2X~N(2,16).由Y~N(2,1),有Y+1~N(3,1).于是E(Z)=E(2X+Y