随机变量X服从二项分布且Y=X²,P(Y=4)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 02:30:35
E(X)=E(Y)=np=2,D(X)=D(Y)=np(1-p)=1.6E(X-Y)=E(X)-E(Y)=0;D(X-Y)=D(X)+D(Y)=3.2P{|X-Y|=>2}=
np=2.4(1)np(1-p)=1.44(2)1-p=1.44/2.4=0.6p=0.4n=2.4/0.4=6答案:B.n=6,p=0.4.
1-(1-p)^3=19/27(1-p)^3=8/27(1-p)=2/3p=1/3P{X>=1}=1-(1-p)^2=5/9
X服从B(3,0.4),故X可取值为0,1,2,3当X=0时,Y=0当X=1,Y=-1当X=2,Y=0当X=3,Y=3所以,Y是个离散型随机变量,可取的值为-1,0,3P(Y=-1)=P(X=1)=C
X--B(n,p)==>p(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)==>E(Y)=所有的y求和y*p(y)=所有的x求和e^(mx)*p(x)=所有的x求和e^(mx)*[C(
X--B(n,p)P(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)E(Y)=所有的y求和Σy*P(y)=所有的x求和Σe^(mx)*P(x)=所有的x求和Σe^(mx)*[C(n,x
(1)由P(X≥1)=5/9,可得P(X=0)=4/9=(1-p)^2,故p=1/3,从而P(Y≥1)=1-(1-p)^3=26/27(2)np乘(1-p)^{n-1}=n(n-1)/2乘p^2乘(1
cov(x,y)=cov(x,2x+3)=2cov(x,x)=2D(x)=2np(1-p)=2*100*0.6*(1-0.6)=48
因为随机变量服从X~(2,P)则,P(ξ≥1)=1-=a(a你没给出),可以求出p;那么,P(η≥1)=1-
由已知,E(X)=np=0.24,D(X)=np*(1-p)=1.68解得n=p=此题无解,怀疑你给的数据给错了.
根据二项分布的期望公式Eξ=xyE(2ξ+4)=2·Eξ+4=2xy+4
由二项分布的公式可以知道P(x=3)=C(6,3)*0.5^3*(1-0.5)^(6-3)=20*0.5^6=0.3125
P(X=k)=C(n,k)*p^k*(1-p)^(n-k).
E(x)=np=300D(x)=np(1-P)=200∴p=1/3,n=900
这个实际上是使用二项分布和泊松分布的卷积公式,计算过程见图两个独立的泊松变量或二项变量之和仍是泊松变量或二项变量
对于X服从二项分布,有下面的公式EX=np,DX=np(1-p)所以有2=np4/3=np(1-p)=2(1-p)解得p=1/3,n=6
D(2X-3Y)=4*D(X)+9*D(Y)D(X)=n*p*q=100*0.2*0.8=16D(Y)=λ=3所求为64+27=91
由于X,Y都服从参数为n,p的二项分布,P(X=i)=C(n,i)p^i(1-p)^(n-i),P(Y=i)=C(n,i)p^i(1-p)^(n-i).设Z=X+Y,由于X,Y是相互独立,因此P(Z=
/>因为X服从参数为(2,p)的二项分布,且P{X≥1}=59,所以:P{X=0}=1-P{X≥1}=49,即:C02P0(1-P)2=(1-P)2=49,求解得:P=13,因为Y服从参数为(3,p)