RSA:已知参数p=7,q=17,e=5,密文c=66,求明文M

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:40:57
运用RSA算法得出公钥和私钥.给定p=11,q=13,e=7,m=687求c

c值的是算出来是正确的,但是M值设置是错误的,在RSA算法中m值不能大于n值,在该算法中是模运算,求出的明密文必然小于n,因此明文不能大于nC=M^emodN;M=C^emodN;

RSA 算法中 mod 运算在程序中怎么表示啊?已知 p=47,q=71,e=79 那么 d=

mod是求余运算符.如果x与y的积除以z所得的余数为1,即xy=1(modz),则称x和y对于模数z来说互为逆元,这种互为逆元的关系用符号表示为:x=y的-1次方(modz)x的-1次方=y(modz

已知实数p.q.r满足p+q+r=26,1/p+1/q+1/r等于31,求p/q+q/r+r/p+p/r+r/q+q/p

因为26*31=(p+q+r)*(1/p+1/q+1/r)=1+1+1+p/q+q/r+r/p+p/r+r/q+q/p所以p/q+q/r+r/p+p/r+r/q+q/p=26*31-3=803

rsa算法过程 题:按照RSA算法,若选两奇数p=5,q=3,公钥e=7,则私钥d为:A.6 B.7 C.8 D.9

n=p*q=15φ(n)=(p-1)*(q-1)=8de=1(molφ(n))d=7再问:请问这句是什么意思,可以解析下么,谢谢de=1(molφ(n))再答:就是d*e=i*φ(n)+1(i=1,2

完成RSA算法,RSA加密 p=3,q=11,e=7,M=5;请写出求公钥和私钥的过程.

n=p*q=33phi=(p-1)(q-1)=20e=7e*d=1(modphi)d=17公私密钥对:(n,d)(n,e)编码过程是,若资料为a,将其看成是一个大整数,假设a如果a>=n的话,就将a表

已知7p^2+3p-2=0,2q^2-3q-7=0,且pq≠1,求(1/p)+q的值

7p^2+3p-2=0除以-p^22*(1/p)^2-3(1/p)-7=02q^2-3q-7=0且pq≠1即q≠1/p所以q和1/p是方程2x^2-3x-7=0的根所以1/p+q=3/2

1.按照RSA算法,若选两个素数p=11,q=7,公钥n=77,e=7,则私钥d=_?答案是说ed=1mod(p-1)(

首先说一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e与d的乘积对(p-1)(q-1)取余结果是1,题目给出e=7,(p-1)(q-1)可以求得是60,即

在RSA算法密钥产生过程中,设P=43,Q=17,取密钥D=593,求公钥

公钥为17.  #include  #include  #include  //判断公钥e是否为素数,1成立,0不成立  intprime(inte);  //判断公钥e与(p-1)*(q-1)的最大

在RSA算法中,已知p=3,q=11,公钥(加密密钥)e=7,明文M=5,求欧拉凼数fΦ(n) ; 私钥d 和密文C;

n=pq=33\phi(n)=(p-1)(q-1)=2*10=20ed=1mod(\phi(n))用扩展欧几里德可求出d=3(直接看出来也可以.)加密密文C=(M^e)%n=(5^7)%20=5解密明

7.给定素数p=3,q=11,用RSA算法生成一对密钥

确定n=p*q=33t=(p-1)*(q-1)=20取e=3计算d,d*emodt=1.则d=7.私钥{n,d}既{33,7}公钥{n,e}{33,3}

求解计算RSA算法加密的步骤.用RSA算法加密时,已知公钥是(e=7,n=20)...

加密时用公钥d,解密时用私钥e公式都一样要加密或解密的数字做e次方或d次方,得到的数字再和n进行模运算,模运算就是求余数拿你给的数据来算的话就是3的7次方等于2187,2187除以20等于109,余数

RSA求私钥d.我知道RSA中由公钥e求私钥d是要满足e*d(mod n)=1.此处n大家都知道是(p-1)(q-1).

你用的语言是哪个?我当时是用C语言写的代码,实现最大RSA-2048.我把思想给你说一下吧.如果我们要定义一个很小的e、d、n、m,那么直接unsignedlongint就可以了.但是这样定义的数据的

RSA算法中,设p=9,q=23,计算加密密钥和解密密钥(要求写出详细计算过程和必要的说明)

如例:自己算p=34q=59这样n=p*q=2006t=(p-1)*(q-1)=1914取e=13,满足eperl-e"foreach$i(1..9999){print($i),lastif$i*13

p=7,q=11,e=17 RSA加密算法 d是多少?

φ(n)=(p-1)(q-1)=6*10=60ed≡1(modφ(n))17d≡1(mod60)上式相当于解不定方程17x+60y=1用"扩展欧几里得算法"求解得到一组解为(x,y

用RSA非对称加密法加密,p=3,q=11,e=3,d=7,明文m=28,求出密文并且用私钥解密验证.

计算n=p*q=33求密文:密文c=m^emodn=21952mod7求明文:明文m=c^dmodn=823543mod33=28在使用时,首先将明文数字化,然后分组,每组数据k(0=

已知集合 P ={3,4} ,Q ={1,2} ,定义 P(+)Q = {x|x= p-q ,p∈P ,q∈Q },则集

P(+)Q中可以有2,1,33-1=23-2=14-1=34-2=3(重复)所以,套用真子集公式,2的n次方(n为元素个数,本题中有三个元素,所以n=3)答案是8

RSA 算法中(e2*e1)mod((p-1)*(q-1))=1.这*号是(e1 x e2) 还是E1^ e2,

mod是求余运算符.如果x与y的积除以z所得的余数为1,即xy=1(modz),则称x和y对于模数z来说互为逆元,这种互为逆元的关系用符号表示为:x=y的-1次方(modz)x的-1次方=y(modz

在rsa算法中 已知 p=101 q=97 e=13 求d?最好给出算法

N=p*q=101*97=9797φ(N)=(p-1)(q-1)=9600欧拉函数(13,9600)=19600=13*738+6辗转相除法13=6*2+11=13-2*6=13-2*(9600-13

对于RSA算法,已知e=31,n=3599,求d.由n=3599,可知pq=59*61=3599,即p=59,q=61

n=p*qp和q取2个最大公约数为1的质数,就得到59和61,