sin(x kπ 2)导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:34:21
可以这么理解设y=x/2然后原题就变成求f(x)=siny的导数因为这里y是一个复合函数所以f(x)=y'(siny)'=1/2*cos(x/2)
f(x)=(1/2^0)·sin(x/2)+(2^0)·cos(2x)f‘(x)=(1/2)·cos(x/2)+(-2)·sin(2x)=(1/2^1)·cos(x/2)+(-2^1)·sin(2x)
(sin(cosx^2))'=cos(cosx^2)*(cosx^2)'=cos(cosx^2)*(-sinx^2)*2x=-[2xcos(cosx^2)*sinx^2]
这是基本的三角变换公式,你可以去看看书里怎么写的
(sinx)^2求导是2sinxcosxsin(x^2)求导是2xcos(x^2)
2sin(2x+π/3)cos(2x+π/3)*2=2sin(4x+2π/3)
(1-cosx)'=sinx[(1-cosx)^2]'=(1-cosx)'*2(1-cosx)=2sinx(1-cosx)[sin(1-cosx)^2]'=[(1-cosx)^2]'*cos(1-co
∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(
(sin(x/2))'=(1/2)cos(x/2).再问:帮我做下这个好吗?
y=2sin²(2x+π/3)=1-cos(4x+2π/3).∴y'=sin(4x+2π/3)·(4x+2π/3)'=4sin(4x+2π/3).
2cos(2x+三分之π)再问:解析呢?再答:sin的导数是cos,然后乘以x前面的系数2,所以答案就是2cos(2x+三分之π)
用链式法则:y=sin(πx)dy/dx=dsin(πx)/d(πx)*d(πx)/dx=cos(πx)*π(dx/dx)=cos(πx)*π=πcos(πx)
看作是复合函数y=u^2u=sinvv=2x+π/3分别对其求导,并相乘所以y'=2sin(2x+π/3)*cos(2x+π/3)*2y'=4sin(2x+π/3)cos(2x+π/3)=2sin(4
y'=2cos(2x-π/4)-3sin(3x+π/3)希望可以帮到你,如果解决了问题,请点下面的"选为满意回答"按钮,
y=sin(x^2)/(sinx)^2用对数求导简单:lny=lnsin(x^2)-ln(sinx)^2y'/y=2xcos(x^2)/sin(x^2)-2sinxcosx/(sinx)^2=2xco
通过复合函数求导,可以得到y'=cos(3x-π/6)*3=3cos(3x-π/6)欢迎追问~
因为sin[2*(x/2)]=2sin(x/2)cos(x/2)所以x-sin(x/2)cos(x/2)=x-1/2sinx导数为1-1/2cosx
y是2次复合y=u^2u=sinvv=3x+π/4y'=2u*u'*v'∴y'=2sin(3x+π/4)*cos(3x+π/4)*(3x+π/4)'=2sin(3x+π/4)*cos(3x+π/4)*
f(x)=sinx+cosx=√2(√2/2sinx+√2/2cosx)=√2sin(x+π/4)再问:为什么提根号2?用的半角公式还是什么?再答:√2是sinx与cosx系数平方和的平方根也就是√(