sin(xy)-ln((x 1) Y)=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:35:33
sin(xy)+ln(y-x)=x两边同时对x求导得:cos(xy)·(y+xy')+(y'-1)/(y-x)=1①当x=0时,sin0-lny=0,解得y=1把x=0,y=1代入①得:cos0·(1
点击放大:
sin(lnx)-sin(lnsinx)=2sin[(lnx-lnsinx)/2]cos[(lnx+lnsinx)/2]因为|cos[(lnx+lnsinx)/2]|
方法一(微分法)d(y/x)=d(ln(xy))(xdy-ydx)/x²=1/xy*d(xy)即(xdy-ydx)/x²=(ydx+xdy)/xy∴dy/dx=(xy+y²
∫sin(lnx)dx=xsin(lnx)-∫xdsin(lnx)=xsin(lnx)-∫xcos(lnx)*1/xdx=xsin(lnx)-∫cos(lnx)dx=xsin(lnx)-xcos(ln
limx[sinln(1+3/x)-sinln(1+1/x)],x趋近于无穷大=lim[sinln(1+3/x)-sinln(1+1/x)]/(1/x)拆项sin(x)~xln(1+3/x)~3/x注
两边求导(y'x-y)/x^2=(y+xy')/xyxy+x^2y'=xyy'+y^2y'=(xy-y^2)/(xy+x^2)
dz=d(xyln(xy))=xyd(ln(xy))+ln(xy)d(xy)=xyd(xy)/(xy)+ln(xy)d(xy)=d(xy)+ln(xy)d(xy)=(1+ln(xy))d(xy)=(1
设Y=y'降阶:Y'=(Y/x)ln(Y/x)这就是一个一阶齐次方程.设Y/x=u,所以Y=ux,Y'=u+x(du/dx),代回原方程,解得:lnu=C1x+1Y=xe^(C1x+1)所以y=[(C
ln(x+2y)=sin(xy)+1对x求导1/(x+2y)*(x+2y)'=cos(xy)*(xy)'+0(1+2y')/(x+2y)=cos(xy)*(y+x*y')x=0则ln(0+2y)=0+
e^(lnx+lny)=e^lnx*e^lny=x*ye^lnxy=xy所以e^(lnx+lny)=e^lnxy所以lnx+lny=lnxy
前三个是三角函数后两个是对数函数再问:真的再答:高中的知识再答:不用谢
u=ln(xy+z)du=d[ln(xy+z)]/dx*dx+d[ln(xy+z)]/dy*dy+d[ln(xy+z)]/dz*dz=y/(xy+z)*dx+x/(xy+z)*dy+1/(xy+z)*
两边都同时求导就可以做出了的,y=y(x)是指该函数可导!
limsin(xy)/x(x.y)->(0.2)=lim{[sin(xy)/xy]*y}=im[sin(xy)/xy]*(limy)(x.y)->(0.2)=1*2=2这里把(xy)看作一个整体,当(
cos(lnx).1/x+1/sinx.(cosx)
两边求导得y'·e^y+(y+xy')/(xy)+e^(-x)=0
sin(xy)-ln((x+1)/y)+1=0对x求导有:(y+xy')cos(xy)-y/(x+1)·[y-(x+1)y']/y^2-y/(x+1)·(x+1)(-1/y^2)y'=0x=0代入有: