麦克尔逊干涉仪圆环和牛顿环有什么区别
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:39:35
小朋友挺有礼貌.注意等倾干涉,考虑理想模型:轴上两光源到某个距离的与轴垂直的平面上中心点及轴外点的距离.1.在两光源非常近的时候(极限情况重合),两光源到轴外点的距离差异与两光源到平面中心点的距离差异
直接用激光加扩束镜干涉前不加毛玻璃,干涉后再毛玻璃屏上观察就可以了,是最容易调节和观察的
1、若不平行,但满足等厚干涉的成像条件,则会观察到等厚的干涉条纹.2、若不严格平行,但基本平行,则等倾干涉的环会变得不圆.3、若非常不平行,则不会出现干涉条纹.
白光不是单纯的光线是混合的光线,而折射率在日常应用中最常用的是白光.每种单色光的折射率其实是不一样的.在这种情况下只好取一个折中方案,这就是白光,这个方案测量出来的折射率其实是所有单色光的混合的折射率
1、2*0.620=2300*波长,所以波长=539nm2、干涉最亮处振幅为原来2倍,光强为原来4倍,4I
迈克尔逊干涉仪产生的是等倾干涉,干涉级大小,条纹厚度,条纹间距跟入射到镜子上的倾斜角度有关系.牛顿环产生的是等厚干涉,干涉级大小,干涉条纹厚度,条纹间距跟入射光线角度无关,跟透镜和下表面距离有关系.
因为M1与M2'形成的"空气膜"的两表面不是绝对平行的,而是有一个小夹角.所以"膜厚"改变时,干涉环心位置会移动.
你镜子倾斜了么,入射光点在两个镜子上,有两次反射,如果垂直的话,入射线和反射线重合,就只有一个像,现在两个镜子就两个像了,加上你中间的分束镜对光源成都像,自然就好几个了,通过调节镜子把所有的像调到重合
在迈克尔逊干涉仪中,光程差Δ=2ntcosθ,n=1,所以,Δ=2tcosθ,t为M1,M2之间的距离,当产生亮条纹时,Δ=2tcosθ=kλ,k为级数,λ为入射光波长.两边求导,得:-2tsinθd
迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器.它是利用分振幅法产生双光束以实现干涉.通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾
迈克耳逊干涉仪上看到的是等倾干涉,牛顿环看到的是等厚干涉,迈克耳逊干涉仪干涉条纹宽度不一,干涉级次中心最大,边缘最小,牛顿环干涉条纹宽度几乎一致,干涉级次中心最小,边缘最大,迈克耳逊干涉仪通过调节镜子
迈克尔逊干涉仪是利用等倾干涉,牛顿环是等厚干涉.1.圆环条纹越向外越密.相关证明见任一《光学》中的推导.2.冒出.2hcosi=mλ,中心(i=0)级次最高,h增加,级次升高,所以冒出.3.等倾:2h
【实验名称】迈克尔逊干涉仪的调整与使用【实验目的】1.了解迈克尔逊干涉仪的干涉原理和迈克尔逊干涉仪的结构,学习其调节方法;2.调节非定域干涉、等倾干涉、等厚干涉条纹,了解非定域干涉、等倾干涉、等厚干涉
要是严格的等倾干涉,两片平面镜所成的虚拟空气劈尖一定要是绝对平行的,可以去掉屏幕前面的扩束透镜,然后看两片镜子反射回来的光点是否完全重合,当他们完全重合的时候,就可以认为是严格的等倾条纹了(当然也要忽
误差是来测量什么时候的误差?要等厚干涉条纹,只要两个镜面不完全平行,稍微有点夹角就行了.这个干涉仪的圆环条纹是等倾干涉的条纹,而牛顿环是等厚干涉的.
光是不是相干的取决于光源,光源的相干性好,入射的光才是相干的.跟你用什么干涉仪没关系!
2ndcosi是光程差.(n是折射率,i是每个环对应的光线与镜片垂直方向的夹角)中间i小:光程差大,对应干涉条纹,级数高;边缘i大:光程差小,对应干涉条纹,级数低;当光程差变大时:对应干涉条纹级数高,
哇,大部分都想不起来了.我试着回答一下吧,不敢保证一定对.1、两种单色光波长不同,我估计应该是干涉花纹的间距有区别.2、牛顿环等厚干涉图样的圆环应该是不等间距的,等倾干涉花样等间距.3、干涉条纹从中央
麦克耳逊干涉仪的干涉条纹是“等倾干涉”,牛顿环是“等厚干涉”即产生干涉条纹的原理不同
迈克尔逊干涉仪产生的是等倾干涉条纹,条纹的明暗变化,和入射角度有关,相同入射角的位置干涉条纹明暗情况一致,条纹间距,条纹粗细都不等,影响条纹干涉变化的主要原因是光源入射角度的问题.牛顿环是等厚干涉条纹