limx→-2X³
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:48:47
证:假设limx→x0[f(x)+g(x)]=B存在.则limx→x0g(x)=limx→x0[f(x)+g(x)−f(x)]=limx→x0[f(x)+g(x)]−limx→x0f(x)=B−A所以limx→x0[g(x)]也存在,这与已
1.上下同乘e^-x2.lim(x→0)(x-arcsinx)/x^3 (0/0,洛必达法则)=lim(x→0)[1-1/√(1+x^2)]/(3x^2)(通分)=lim(x→0)[√(1+x^2)-1]/[√(1+x^2)*(3x^2)]
limx→∞(1+1/2x)^3x+2=limx→∞(1+1/2x)^2x*(3x+2)/(2x)=e^limx→∞(3x+2)/(2x)=e^(3/2)
limx→0[(x-sinx)/x²](0/0型)=limx→0[(1-cosx)/2x](0/0型)=limx→0(1/2)sinx=0.
limx/ln(1+x²)[分子分母都趋向于0]x→0=lim1/[2x/1+x²][运用罗毕达法则,分子分母分别各自求导了一次]x→0=lim(1+x²)/2x[分子趋向于1,分母趋向于0]x→0=∞(无穷大
limx→0x^2/(x-1)=limx→0[(x^2-1)+1]/(x-1)=limx→0[(x-1)(x+1)+1]/(x-1)=limx→0(x+2)=2
lim1000x/(1+x^2)=lim(1000/x)/(1/x^2+1)=0.
再问:第三题里面的a和c都能算出来了。那么b怎么算再答:我看错了,以为是趋于无穷大。再问:第2题最后一步(2/x)/e^x的极限为什么为0,2/x的极限是0,e^x的极限不是不存在吗?这种情况下怎么算整体的极限呢再答:第二题里,分子2/x是
limx→0(x-1)/x^2=-1/0=-无穷
再答:望采纳
limx→0x/Sin(x/2)=2limx→0(x/2)/Sin(x/2)=2*1=2再问:为什么是2乘以1啊再答:x/2趋于0sin(x/2)/(x/2)极限是1
应该是f'(x)=lim(x→0)[f(2x)/(2x)]=(1/2)lim(x→0)[f(2x)/x]=(1/2)*2=1.f'(x)=lim(x→无穷)[f(1/2x)/(1/2x)=2lim(x→无穷)xf(1/2x)=1.所以,li
lim(x→0)f(x)/x^2=2则lim(x→0)f(x)/x=lim(x→0)f(x)/x^2*x=lim(x→0)f(x)/x^2*lim(x→0)x=0*2=0
显然x趋于2时,分母x-2趋于0而[f(x)-5]/(x-2)的极限值为3,如果f(x)-5不是趋于0的话,除以分母0,一定会趋于无穷,而不是常数3所以limx->2f(x)-5=0即limx->2f(x)=5
第二题用的是第二个重要极限. 【数学之美】团队为您解答,若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
利用洛比达法则limx^(1/2)lnx=limlnx/x^(-1/2)=lim(1/x)/(-1/2)x^(-3/2)=-1/2*limx^(1/2)=0
lim(x→0){(tanx-x)/[xtan(x^2)]}=lim(x→0){(tanx-x)/[x(x^2)]}=lim(x→0){(tanx-x)/(x^3)}(0/0)=lim(x→0){(secx)^2-1]/(3x^2)}=li
1设y=∏/2-arctanx那么x=cot(y),x→+∞,y→0原极限即为:cot(y)*y=y/tan(y)=cos(y)*y/sin(y)易知y/sin(y)=1cos(y)=1(y→0)所以结果就是1
x趋于零时,1-cosx等价于x^2/2,直接就可得出答案是1/2,这是考研的送分题呀!再说明白点,1-cosx=1-(1-2(sin(x/2))^2)=2sin(x/2)^2等价于x^2/2.老兄,我是考研科班出身的,分给我吧!
lim(x→0)(2sinx-sin2x)/x^3=lim(x→0)(2sinx-2sinxcosx)/x^3=lim(x→0)2sinx(1-cosx)/x^3=lim(x→0)2x*x^2/2*1/x^3=1