spss回归分析中常数的P值大于0.05可以吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:04:46
SPSS线性回归分析中常数项Sig值应该是什么范围的?他所对应的系数项过大怎么办?

sig是指的的显著性水平,就是p值,一般来说接近0.00越好,过大的话只能说不显著,这是你选择的样本和模型决定的,没法办

spss回归分析中 模型的 常量 sig值高于0.05 这个回归还有效么?

常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:

SPSS回归分析求助.

给你举个例子来说明吧左表的数据是对数年来国内旅游者的旅游花费与自由自配收入、闲暇时间的调查数据.(数据是假设的)目的:试进行多重回归分析,求出回归方程式,来年若闲暇时间没有变化,但自由自配收入较之今年

求救,spss回归分析中常数项是负值是什么意思呢?

常数项为负p值0.04,拒绝常数项为0的假设,统计显著,没问题.再问:那意思是说我这个回归方程没有常数项吗?再答:呵呵相反常数项的P值很小,表明常数项不是显著为0的,它应该包含在模型中。再问:那就是Y

SPSS的多元回归分析结果

你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.

SPSS进行回归分析的问题

楼上有位仁兄说的对,用analyse--regression--nonlinearregression做非线形回归.把你所需要的方程连同系数全部输入到指定的对话框中,我总结是这样的:1.打开SPSS2

Logistic回归分析的SPSS操作

把196个根据你们制定的标准,分为1和2,也就是全用1和2来表示.然后输进去,其他的都作为自变量.也都是按1和2两类来分.SPSS设计的不太人性化,挺简单的问题,弄的很复杂.网上有个中文教程,是PDF

在spss软件进行logistic回归分析wald检验p值在哪里看

wald下就为wald值sig.下就为所求的P值

我做的spss多元线性回归分析中sig比较大 怎么调整数据

造价是把?不建议造价,不是因为道德原因,而是造假太费功夫,很费时间,非专业人士不能做我经常帮别人做这类的数据分析的

spss回归分析的一道题目,

①是决定系数(R^2)R=0.993R的平方就是①②均方=平方和/df,所以②=1634530878.898/1先求④,④=②/F③=33×④⑤=1634530878.898+③⑥=1+33=34⑦=

SPSS回归分析中的标注回归系数beta t值 P值 具体含义及要求,需要检查模型.

P值是拒绝原假设的值回归系数b是通过样本及回归模型通过SPSS计算得出的,是反映当自变量x的变动引起因变量y变动的量回归系数b的检验是t检验当P

SPSS 回归分析疑问

这种情况很正常知道吗因为在计算相关系数时,得到相关系数0.21,说明相关性不是很强,但通过检验了,说明在总体中AB也存在这种相关关系而回归分析是,我想你应该是建立一元线性回归吧,但没有通过检验,这种一

求大神分析SPSS回归分析后的数据!

模型可行:因为R和R方还是比较大的,说明变量相关性和解释度都高;回归模型的F检验值的概率值小于0.05,说明回归模型的拟合度极高.关于系数:系数的值表示的是自变量对因变量的影响程度.每个自变量对于因变

spss怎么做回归分析的?

依次点击analyze-regression-linear,选择好自变量independent和因变量dependent,点击OK.输出结果……

spss回归分析散点图

abcde是一个问题的五个选项?是分类变量还是连续性的变量如果是分类变量需要转变成哑变量才能回归,如果是连续性的变量可以直接纳入回归中另外回归分析要看散点图呈现线性关系可以用线性回归,对因变量要求为连

求救,spss回归分析中常数项是负值是什么意思呢?常数项能不能是负数呢?

常数项的正负都没有关系,它是否显著也没什么意义关键是你要看自变量的回归系数正负是否符合你的专业常识这个回归方程是:y=0.350*x1+0.332*x2+0.470*x3+0.211*x4-0.911

我用SPSS作了多元回归分析,变量的sig好大,这样行吗?

肯定不行啊没有意义哦再问:就只是变量的sig值太大,别的都没问题吗??再答:sig值太大,别的就不用看了啊没有用了

spss回归分析的F检验值

你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05

关于SPSS的回归分析

你直接用SPSS的菜单上的回归就可以做了,有向导的,你跟着做就是了,最后就会得到结果,至于99.7%的参数中间有一步你可以自己改参数的