spss回归分析常量的显著性是1是什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:00:15
常量sig值高于0.05这个回归仍然有效,这仅仅表明线性回归的截距项可以被设定为0,也就是经过原点.但是,如果你将截距项设为0,则该方程的拟合优度指标值(R的平方)将是不准确的,即使你重新拟合.再问:
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
用SPSS的独立样本T检验,可以两两比较或者使用SPSS中的方差分析,也可以判断这三组是否存在着显著性差异
如果是非常不显著,建议删除,其它情况比如15%的水平下是显著的,建议保留,这得根据实际问题来.可以试着先将最不显著的剔除掉,再看看方程,也许就会出现显著系数增多的情况,建议一个个删除.
哪个自变量比较重要吗?看标化系数再问:是标准系数?那回归方程的话最后是用非标准化系数的B还是标准系数呢?谢谢~~~~(>_
以你所选取的自变量拟出的公式与实际的统计值出入比较大,建议去除相关性较小的几个自变量就有可能小于0.05.
看SIG.不会你的模型不通过T检验,没有什么意义
β对应的P值大于所给的显著性水平一般取α=0.05意为β对应的变量对因变量的影响明显
你是想调整数据呢还是想调整什么呢?线性回归时候,相关系数只是表明了各个系数之间的相关程度.但是自变量对因变量不显著的话,只能说明自变量多因变量影响不大,可以考虑换其他的跟因变量关系更加大的变量.或者在
单组卡方分析,非参数里再问:是在非参数检验里面选择哪个?第一是卡方,第二是二项式,第三是游程,第四是1-样本K-S,第五是2个独立样本,第六是K个独立样本,第七是2个相关样本,第八是K个相关样本,选哪
"比如假设第一组的数据是838083第二组是896370"是说求这两个组的平均值是否差异显著么?首先,只比较两组数据的话,是用t检验.如果这两组是相关关系,用Paired-SamplesTtest;如
自己在报告里面手工加进去好了spss结果除了相关分析会自动加上去*之外其他的都不会加上去的
常量就是贝塔0,是回归方程在y轴上的截距,t检验的系数看变量对应的sig.越小越好,表明越显著,不用管那个常量的.
晕,T检验(独立样本T检验、相关样本T检验)、方差分析(one-wayanova;univerate;repeatedmeasure)、非参检验(卡方检验,crosstable等)都可以来看显著性.你
两者显著相关(r=0.999,p=0.000<0.01)
刚看了一篇外文文献,其中提到了几个变量之间的相关性分析.作者用SPSS得出A与B的相关性系数约为0.09,但显著性水平大于0.05即不显著.随后继续作回归性分析(未阐明是否是多元线性)结论是BETA值
你直接用SPSS的菜单上的回归就可以做了,有向导的,你跟着做就是了,最后就会得到结果,至于99.7%的参数中间有一步你可以自己改参数的
不能拒绝二次adm项系数为0的假设所以不显著你可以看看二次回归和一次回归R方的差异如果不大说明一次v即可.再问:但是R^2很大啊。。。再答:一次和二次的R方差异是多少?再问:相差不大。。。
数据处理么?再问:对哒再答:留个邮箱吧
回归系数比较大小是通过绝对值的比较,同时应该看后面的标准化回归系数进行比较影响的大小