spss数据分析的P值怎么看
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:56:27
*代表p再问:能具体说说表格中每个数字的意思吗?比如表中哪个数字代表P值,哪个数字代表样本量等等再答:。。。。55是样本量,0.003是p,你这完全不懂,还是别自己瞎做再问:那1和0.399呢?
前面的几个表是回归分析的结果,主要看系数0.516,表示自变量增加一个单位,因变量平均增加0.516个单位.后面的sig值小于0.05,说明系数和0的差别显著.还要看R2=0.641,说明自变量解释了
ModelSummary是对模型拟合效果的总结,R是相关系数,R2是决定系数,系数越大表面拟合效果越好.ANOVA是方差分析,然后F检验Coefficients就是回归结果,得到的回归方程的系数
A1和A2之间的相关水平为-0.663,达到了非常显著的水平.B1和B2B3B4之间的相关水平分别是-0.501、-0.616、-0.501,都达到了非常显著的水平.这里是负相关,表示的是当一个变量的
spss分析结果中不是用字母P来表示,而是sig.来表示的
方差齐性检验的f和p值就是看上面一栏方差分析就看下面一栏所以,用哪一个,取决于你要看什么
表格中左4列只是均值、中位数.最右1列是差异检验的结果报告:t值是个统计量,利用了两个变量的均值和标准差计算出来的(有公式,spss软件可自动计算出来).比如x1变量上,舞弊和控制两组被试之间得分有无
相关系数是0.357,p=0.009,显著的我替别人做这类的数据分析蛮多的再问:意思是二者有相关性且较为显著吗?可以简单说下怎么看吗QAQ
要看数据分布形态了,我替别人做这类的数据分析蛮多的再问:嗯嗯,多谢了,能不能发点spss13的使用说明
模型可行:因为R和R方还是比较大的,说明变量相关性和解释度都高;回归模型的F检验值的概率值小于0.05,说明回归模型的拟合度极高.关于系数:系数的值表示的是自变量对因变量的影响程度.每个自变量对于因变
KMO检验用于检查变量间的偏相关性一般认为该值大于0.9时效果最佳0.7以上尚可,0.6时效果较差Bartlett's球形检验用于检验相关阵是否是单位阵P
朋友,你这个数据可采用pearson相关分析就可以,spss的步骤如下:1、单击Analyze——Correlate——Bivariate...,则弹出相关分析BivariateCorrelation
统计可以用很科学很复杂的方式去处理,也可以简单化的处理,主要看你数据的用途,如果不是需要发表论文之类,可以按以下简单方式来操作,spss的回归过程,已经包含了验证.1、在spss里把A、B、C、D四个
连续型变量用Pearson相关,分类变量Spearman相关第一个表看对应的相关系数-0.098,P值0.002,小于0.05,有统计学意义.说明存在弱的负相关.第二个图就是两个变量的均值与标准差.再
9个样本数据计算出的平均每日转发数与相关微博搜索量的pearson相关系数值0.905,它的实际显著性水平为0.001,小于理论显著性水平0.01,说明相关系数的值不是由偶然因素造成的,0.905接近
一般资料看上面的那个,0.020,小于0.05,统计学差异显著.再问:也就是说看sig(双侧)上面那个值就行了?小于0.05为显著?请问第一个sig0.252是什么意思啊,还有假设方差不想等那一行的s
你是否想检验两组(治疗组、对照组)间的有效性是否有差异吗?
5等级量表大多数情况下默认是等距数据,用等距数据的处理方法,你需要那数据过来看一下
如果将各年级间的三个水平分别进行差异检验,这样有意义吗?答:好像没有.因为已经证明,总分在年级间没有显著差异.但可以试一试,方法要改变.总分的年级间比较,用方差分析合适.改成三个水平比较,则适用于卡方
操作完了点击OK,而不是点击Paste来粘贴语法.如果生成了Syntax语法窗口,就点击run执行语句就行了