spss自相关检验
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:02:22
sig是方差差异是否显著的依据sig.(2-tailed)是总体均值差异是否显著的依据
第1题,用卡方检验,但是由于有的单元格频数小于5,应该使用Fisher精确检验.结果见下图:0.073即Fisher精确P值,大于0.05,表明在0.05的显著性水平上接受原假设,认为两组疗效差别不显
DW检验用于检验随机误差项具有一阶自回归形式的序列相关问题,也是就自相关检验D-W检验:德宾—沃森统计量(D-W统计量)是检验模型是否存在自相关的一种简单有效的方法,其公式为:D-W=∑(Et-Et-
2变量分析可以做的有没有相关关系是由数据决定的,不是用统计方法做出来的再问:如果我有很多变量同时分析两两相关关系也是可以的吗?再答:可以的,spss允许的
你的数据不适合使用卡方检验.卡方检验用于2个变量都属于分类变量(例如性别、婚姻状态等,属于定性数据)时的数据分析,例如要分析性别与色盲之间(色盲一般分为“有”和“无”2个分类,属于定性变量)的关系,就
用因子分析,就已经是在检验变量的整体了 因子分析就是用少数几个因子来描述许多指标或因素之间的联系,以较少几个因子反映原资料的大部分信息的统计方法. 三、因子分析的SPSS过程 第一步:准备数据文
spss数据转换里面有一项创建时间序列,里面有生成滞后的参数设定
图片可以设置为背景,用marquee标签设置滚动效果
跟据所有可能的因变量进行估计,建立多元线性回归方程,根据最小二乘原理,求解各系数,但因变量项N多时,解线性方程组会变得相当困难,我们常用高斯消去法与消去变换来求解多元线性方程组比较常用.具体运算比较复
不行,应该是卡方检验.再问:为什么呢?是样本不独立么?卡方是交叉列联表里的卡方,还是非线性的呢?分不清楚谢谢回答~再答:并不是样本不独立,独立样本T检验,适用于一个变量是二分类变量,另一个变量是数值变
选择菜单analyze(分析)——descriptivestatistics——descriptives,弹出descriptives对话框,把分析的变量(X)选入Variable(s)列表框中,点O
t检验是用来说明两组数据是否差异显著的.如果要看相关程度,应用“双变量相关分析”,具体如下:1、Analyze->Correlate->Bivariate;2、选择两变量进入变量框(Variable)
看你的目的是什么啦,如果仅仅估计参数,无论是异方差还是自相关,你的参数都是无偏的;但方差较大,预测准确度较低.你要克服异方差同时还有自相关,建议拟采用FGLS(可行广义二乘),可同时达到目的.广义差分
如果比较某两年的阳性率的差异,应该用t检验.要比较4年的阳性率差异应该用卡方检验.具体的方法是用SPSS的Analyze菜单--Descriptivestatistics--Crosstabs,Row
相关系数R呢?决定系数R方呢?你这里是只有两个自变量Size和PS吗?因变量ROE.你用的是全变量回归还是逐步回归?你给的图不全回归方程进行检验F=2.693,P=0.074,回归方程无统计学意义我感
按以下格式录入数据:分组是否发病人数1126122421292221将变量“人数”WeightCasesAnalyze->DescriptiveStatistics->Crosstabs:将分组放入“
我猜想你的F和第一个sig是那个levene检验吧,sig大于待定的数比如0.1或0.05为方差齐,否则为方差不齐.你后面的t,df和sig(双侧)应该分别指:t检验数,自由度,双侧检验的显著性,一般
不是是卡方检验在分析——列连分析先设置三个变量,再对人数变量加权,加权之后才能进行卡方检验,不知道你明白了没有
基本符合的可以做检验normaltest我替别人做这类的数据分析蛮多的
首先做滞后一期的残差(在时间序列里边),然后把残差和滞后一期的残差做回归,记下它的斜率.在做滞后一期的自变量和因变量、建立新变量=元变量-斜率*滞后一期的变量.做新变量之间的回归.检查DW,若仍不合格