stata F值的显著性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:19:29
你那个0.02就是检验的p值,当它小于显著性水平时,就要拒绝原假设.显著性水平与犯第一类错误的概率之间不是一回事,但存在一个控制关系:犯第一类错误的概率不会超过显著性水平.这个控制关系也是我们在确定拒
显著性检验主要看t值和P值,在SPSS显示的结果中,significance是显著性的意思,sig即代表P值,以上结果P均大于0.05,表明不存在统计学差异.再问:所以是不显著吗?这几个变量相关性不强
p值说的是你算出来的一个检验变量所对应的概率值,比如算出来p值是10%,说的就是,你如果以此为界拒绝原假设的话,那么有10%的可能性要犯错误,就是说本来原假设对,但是你却给拒绝了.所以说p值越大,拒绝
看P值,即P>|t|那一列.另外取决于你定的显著性水平,如显著性水平设为5%,则P值小于0.05的变量都是显著的.
亚洲气候具有显著的[季风性]和[大陆性].
你要是就做两组的检验,t检验就行.第一组的第一个题和第二组的第一个题.你要是想做多组的,应该用方差分析了.就是ANOVA或者univarite~也在analyse里面
正交实验的数据处理使用的是方差分析法,其原假设是各组平均值之间无显著差异.在显著性水平取0.05的前提下,sig值(也就是统计学教科书的P值)大于0.05就表明不能否定原假设,也就是这个因素对结果没有
根据费希尔的理论,当p值小于0.05时在统计上是显著的,一般人们遵循费希尔设定的0.05作为显著性水平.但具体来说,还应根据预先设定的显著性水平来判断.
这种情况不实和,标星号,标字母比较好!
5种植物一起建.每个数据都要输入.
显著性检验的基本思想可以用小概率原理来解释.1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了.那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的
这句话分两种情况考虑,第一,在一元线性回归的情况下,由于只有一个系数需要检验,所以回归方程的F检验与系数的T检验的结果是一直的.第二,在多元线性回归的情况下,方程总体的线性关系检验不一定与回归系数检验
如果P值小于0.05,拒绝原假设,说明在0.05的显著性水平上,两次测量的差异是显著的,或者说,这个差异具有统计学上的意义.统计人刘得意
品种5、2与品种4、1的样本均数有显著差异.不要理解为是品种5和品种2,而应该理解为品种5或者2与品种4或者1.也即品种5与品种4,品种5与品种1,品种2与品种4,品种2与品种1.over.再问:那为
交互作用分析要有重复实验的.没有重复实验的话,组内误差也即Error的自由度df为0,导致后续的结果无法分析.一般解决的方法,就是补做重复实验.再问:那请问怎么补做重复实验?我上网搜着教程,结合课本的
一,首先算出不同分布所对应的待定值a二,然后根据分布值表查出在不同的显著性水平下的值a1二,比较二者的大小就可判断:如果前者大则拒绝反之接受.具体的例子可以看一下大学的数理统计,不同的分布有不同的结果
法律最显著特征一是法律由国家制定或认可.二是法律靠国家强制力保证实施,具有强制性.三是法律对全体社会成员具有普遍约束力.
t检验是看有无差异,相关是看变化趋势是否有关联.但从你描述来看,你这个问卷本身不太有说服力啊.顾客本身对酒店,既评期望分,又评实际分,其中混淆因素太多,你无法解释清楚.而且22个题最好合并一下维度,否
检验的显著性水平是(B)显著性水平是人们事先指定的犯第Ⅰ类错误的最大允许值.显著性水平越小,犯第一类错误的可能性自然就越小,但犯第二类错误的可能性则随之增大.确定了显著性水平就等于控制了犯第Ⅰ类错误的
数据处理么?再问:对哒再答:留个邮箱吧