STC=0.04Q∧3-0.6Q∧2+10Q+5,当SMC最低时,Q为多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:38:57
STC'=0.12Q^2-1.6Q+10令STC'=0求得Q=?STC极值点把极值点Q=?带入比较求的SAC取最小值时Q的取值.
AC(Q)=TC(Q)/Q=0.04Q2-0.8Q+10+5/QAC(Q)=AVC(Q)+AFC(Q)则AVC(Q)=0.04Q2-0.8Q2+10AFC(Q)=5/Q当Q=0.8/(2*0.04)=
STC是短期总成本固定成本FC=STC(Q=0)=9可变成本VC=TC-FC=8Q^3-12Q^2+3Q平均成本AC=TC/Q=8Q^2-12Q+3+9/Q平均固定成本AFC=FC/Q=9/Q平均可变
1、可变成本:0.04Q^3-0.8Q^2+10Q不变成本:52、TVC(Q)=0.04Q^3-0.8Q^2+10QAVC(Q)=TVC(Q)/Q=0.04Q^2-0.8Q+10AFC(Q)=5/QM
我只能给你做两道题,因为这么多题目太花时间了,其余的你自己做吧.这些题目都是非常简单的题目,自己练练也好.有什么难题可以加我QQ:77970217,但我不希望你什么问题都依赖别人.另外,我建议你今后问
由反需求函数为P=8-0.4Q得到利润函数曲线为P=8-0.8Q而单位成本(即供应曲线)为STC/Q=0.6Q+3+2/Q两条曲线的交点就是该垄断厂商短期内选择生产量的位置此时均衡产量=Q=3.1(另
平均可变成本AVC=(0.04Q^3-0.8Q^2+10Q)/Q=0.04Q^2-0.8Q+10边际成本MC=STC'=0.12Q^2-1.6Q+10
(1)完全竞争短期均衡时有MC=P,即MC=0.3Q(平方)+4Q+15=55得Q=利润=PQ-STC=……(2)厂商停产的条件是P小于平均可变成本SFC=STC-10(也就是去掉常数项,常数项是固定
stc=q^3-6q^2+30q+40第一问,P=66,利润π=P*q-stc也就是π=66q-q^3+6q^2-30q-40求一阶导数,即可得max(π)算下来到最后q^2-4q-12=0显然q=6
这题是求平均可变成本与短期边际成本的关系,短期边际成本SMC(Q)与短期总成本STC(Q)的关系,平均可变成本AVC(Q)与总可变成本TVC(Q)的关系.短期边际成本穿过平均可变成本的最低点,因此解出
1、①可变成本与产量Q有关,可变成本(TVC)=Qˆ3-10Qˆ2+17Q不变成本与产量Q无关,不变成本(FC)=66②.TVC=Qˆ3-10Qˆ2+17QSA
平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/Q对函数取值的影响不超过1,因此AVC的
可变成本为TVC=0.04Q3-0.8Q2+10Q不变成本为TFC=5平均可变成本AVC=TVC/Q=0.04Q2-0.8Q+10=0.04(Q-10)2+6则当Q=10时取最小的平均可变成本MinA
先列出平均成本函数,对其求一阶导数,得两解,分别代入二阶导数,若二阶值大于零,为极小值点.若两解代入二阶导均大于零.则将两解分别代入原函数,得最小值,及得题解.
SMC=3Q^2-8Q+100,积分得,STC=Q³-4Q²+100Q+FC代入Q=10,2400=10³-4×10²+100×10+FC,得FC=800,所以
平均可变成本AVC=STC/Q=0.04Q^2-0.8Q+10+5/QQ为正整数,二次函数0.04Q^2-0.8Q+10的最小值出现在Q=10处,而Q>5后5/Q对函数取值的影响不超过1,因此AVC的
AVC=STC/Q=0.04Q^2-0.08Q+10是平均可变成本函数,呈现U型,有一个最小值.数学问题求极值,求导数令其等于零:0.08Q-0.08=0,得Q=1.
1,求SMCmin时的Q:对STC求二阶偏导,令其二阶偏导数为零会得出Q值,求出STC三阶偏导,把算出的Q值代入,若大于零这位最小值;2,求AVCmin的Q:对(STC/Q)求偏导,令其偏导为零,求出
(1)可变成本部分5Q3-4Q2+3Q不变成本部分50(2)TVC(Q)=5Q3-4Q2+3QAC(Q)=STC(Q)/Q=5Q2-4Q+3+50/QAVC(Q)=可变成本/Q=5Q2-4Q+3AFC
短期边际成本SMC=STC的导数,于是SMC=240-8Q+Q^2(Q^n表示Q的n次方)于是SMC在Q=4时达到最小(开口向上的二次函数在对称轴处取得最小值)AVC=(240Q-4Q^2+(1/3)