X=Y^2,Y=X围成的区域的边界求弧长积分y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:40:41
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

求二重积分e^[(x-y)/(x+y)]dxdy,积分区域为x=0,y=0,x+y=1所围成的区域

这题要用到二重积分的换元法……设x-y=u,x+y=v,得x=(v+u)/2,y=(v-u)/2,则在此变换下,积分区域边界曲线化为了v=1,u=2v,u=-v,新的积分区域为D'={(u,v)|0≤

在X-Y平面上画出同时满足Y>=X及Y>=X^2-X-6的区域

在平面上画出直线y=x,和抛物线Y=X^2-X-6在直线左上方,且在抛物线上方的区域,即为所求.再问:可唔可以画图比我睇~再答: 二次曲线画的不准,你认真画一下。

曲线y=|x|,与圆x^2+y^2=4所围成的最小区域面积是?

阴影部分就是要求的面积区域直线y=x和y=-x是垂直的即围城的面积是圆的面积的1/4s=πr²/4=π*4/4=π

利用二重积分求y=x+1与y^2=1-x所围成平面区域的面积

直线y=x+1与抛物线y^2=1-x的交点满足这两个方程:y=x+1,y^2=1-x解得两个交点为:(0,1),(-3,-2).所以,直线y=x+1与抛物线y^2=1-x围成的区域为D:-2

计算由曲线y=x^2与x+y+2所围成的平面区域的面积急

由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-

∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分

原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^

设随机变量(X,Y)在平面区域D上服从均匀分布,其中D是由直线y=x和曲线y=x^2所围成的区域,求(X,Y)的边缘概

设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函

∫∫e^(x+y)dxdy,积分区域为x=0,y=0,x+y=1所围成的区域

∫∫e^(x+y)dxdy=∫[0,1]dx∫[0,1-x]e^x*e^ydy=∫[0,1]e^xdx∫[0,1-x]e^ydy=∫[0,1]e^xdx(e^y|[0,1-x])=∫[0,1]e^x(

利用二重积分计算由y^2=2x,y=x所围成的闭区域的面积

∫(0~2)dy∫(y^2/2~y)dx=∫(0~2)(y-y^2/2)dy=2/3

计算二重积分(X*X+Y*Y)dxdy,其中是由X*X+Y*Y=4围成的闭区域

作一个极坐标变换r=根号(x^2+y^2)w=arctan(y/x)则原积分变为了\int_{0,2}dr\int_{0,2pi}dwr^3=8pi看一下你的高数书上关于极坐标那一块.

设随机变量(X,Y)服从区域D上的均匀分布,其中区域D是直线y=x,x=1和x轴所围成的三角形区域,则(X,Y)的概率密

求出面积0.5概率密度f(x,y)=2当(X,Y)∈D时,其他=0再问:面积是0.5,怎么得到的概率密度是2呢?再答:均匀分布,密度是面积的倒数

求二重积分∫x√ydxdy,D:y^2=x,y=x^2所围成的区域

原式=∫xdx∫√ydy(自己作图分析)=(2/3)∫x(x^(3/4)-x³)dx=(2/3)∫(x^(7/4)-x^4)dx=(2/3)(4/11-1/5)=6/55.

y=x-2与x=y平方围成的平面区域的面积为多少

9/2可逆向x=y+2与x=y^2y+2=y^2解得y=-1y=2画图易得x=y+2在上方对(y+2-y^2)积分上下限分别是2和-1(1/2)*y^2+2y+(1/3)*y^3求得为4.5(9/2)

求抛物线y=x^2和x=y^2围成的平面区域的面积

二者交于(0,0),(1,1)因为二者关于y=x对称, 算y=x与其一间的距离, 再加倍也行.

计算二重积分∫∫e^y^2dσ,其中D:y=x及y=2x,y=1所围成的闭区域

y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/