X=Y^2,Y=X围成的区域的边界求弧长积分y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:40:41
均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0
这题要用到二重积分的换元法……设x-y=u,x+y=v,得x=(v+u)/2,y=(v-u)/2,则在此变换下,积分区域边界曲线化为了v=1,u=2v,u=-v,新的积分区域为D'={(u,v)|0≤
在平面上画出直线y=x,和抛物线Y=X^2-X-6在直线左上方,且在抛物线上方的区域,即为所求.再问:可唔可以画图比我睇~再答: 二次曲线画的不准,你认真画一下。
阴影部分就是要求的面积区域直线y=x和y=-x是垂直的即围城的面积是圆的面积的1/4s=πr²/4=π*4/4=π
直线y=x+1与抛物线y^2=1-x的交点满足这两个方程:y=x+1,y^2=1-x解得两个交点为:(0,1),(-3,-2).所以,直线y=x+1与抛物线y^2=1-x围成的区域为D:-2
由曲线y=x^2与x+y=2所围成?y=x^2与x+y=2的交点(1,1)(-2,4)S=∫(-2,1)(2-x-x^2)dx=(2x-x^2/2-x^3/3)|(-2,1)=(1-1/2-1/3)-
原式=∫dy∫(y/x)²dx=∫y²dy∫(1/x²)dx=∫y²(y-1/y)dy=∫(y³-y)dy=(y^4/4-y²/2)│=2^
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
∫∫e^(x+y)dxdy=∫[0,1]dx∫[0,1-x]e^x*e^ydy=∫[0,1]e^xdx∫[0,1-x]e^ydy=∫[0,1]e^xdx(e^y|[0,1-x])=∫[0,1]e^x(
∫(0~2)dy∫(y^2/2~y)dx=∫(0~2)(y-y^2/2)dy=2/3
作一个极坐标变换r=根号(x^2+y^2)w=arctan(y/x)则原积分变为了\int_{0,2}dr\int_{0,2pi}dwr^3=8pi看一下你的高数书上关于极坐标那一块.
交点时(0,0),(1,1)0
求出面积0.5概率密度f(x,y)=2当(X,Y)∈D时,其他=0再问:面积是0.5,怎么得到的概率密度是2呢?再答:均匀分布,密度是面积的倒数
原式=∫xdx∫√ydy(自己作图分析)=(2/3)∫x(x^(3/4)-x³)dx=(2/3)∫(x^(7/4)-x^4)dx=(2/3)(4/11-1/5)=6/55.
9/2可逆向x=y+2与x=y^2y+2=y^2解得y=-1y=2画图易得x=y+2在上方对(y+2-y^2)积分上下限分别是2和-1(1/2)*y^2+2y+(1/3)*y^3求得为4.5(9/2)
二者交于(0,0),(1,1)因为二者关于y=x对称, 算y=x与其一间的距离, 再加倍也行.
选择A再问:额。有步骤嘛。。
y=x及y=2x,y=1交点(1/2,1),(1,1)则∫∫e^y^2dσ=∫[0,1]∫[y/2,y]e^y^2dxdy=∫[0,1]e^y^2∫[y/2,y]dxdy=∫[0,1]e^y^2*y/