xdx (1 y)-ydy (1 x)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:16:01
这里涉及到著名的超越函数Si(x)=∫[0,x]sint/tdt可以用级数来表示:Si(x)=x-x^3/3!/3+x^5/5!/5-x^7/7!/7+x^9/9!/9-...因为∫[x^2,1]si
用分部积分法就可以很快得出答案,1.∫xdx/(1+x*x*x*x)=x*x/(1+x*x*x*x)-∫x/(1+x*x*x*x)dx=x*x/(1+x*x*x*x)-1/2∫1/(1+x*x*x*x
df/dx=x这个结论不全对,应该是f对x的偏导等于x,而不是导数.这是因为全微分公式,f的全微分=f对x的偏导乘以dx+f对y的偏导乘以dy.
交换积分次序:∫[0,1]dx∫[x,√x]siny/ydy=∫[0,1]dy∫[y²--->y]siny/ydx=∫[0,1](siny/y)(y-y²)dy=∫[0,1](si
没有验算,请自己检验结果.
∵e^(y^2+x)dx+ydy=0==>e^(y^2)*e^xdx=-ydy==>-2ye^(-y^2)dy=2e^xdx==>e^(-y^2)d(-y^2)=2e^xdx==>e^(-y^2)=2
f(x,y)=x^2-y^2+C,f(1,1)=2=>C=2f(x,y)=x^2-y^2+2,区域D={(x,y)|x^2+y^2/4≤1}上,(1)在区域D的内部,由2x=0,2y=0得:驻点(0,
ydy/(1+y^2)=x^2dx两边乘2d(1+y^2)/(1+y^2)=2x^2dx两边积分ln(1+y^2)=2x^3/3+lnC1+y^2=e^(Cx^3)y=√[e^(Cx^3)-1]
D.是f(x,y)的极小值点
移项得到,(1+x^2)dy=-(1+y^2)dx再两边同时除以(1+x^2)(1+y^2),得到dy/(1+y^2)=-dx(1+x^2)然后两边分别关于各自的变量积分,得到解应该是arctany=
y=[x/(1+x)]^xlny=ln[x/(1+x)]^xlny=xln[x/(1+x)]lny=xlnx-xln(1+x)dlny=d{xlnx-xln(1+x)}dy/y=[1+lnx-x/(1
(1)∫(inx)平方1/xdx=∫(lnx)平方d(lnx)=1/3(lnx)立方(2)y=1-x/根号xy’=(-1*根号x-1/2x(-1/2次方)*(1-x))/x这个在知道上面打蛮麻烦的就用
如果有用及时采纳再问:问下为什么前面要加负号再答:加符号就对换了积分的上下限。再问:哦,谢谢
1、ydy-e^(y^2+3x)dx=0ydy=e^(y^2+3x)dxydy/e^(y^2)=e^(3x)dx两边积分得1/2ln[e^(y^2)]=1/3e^(3x)+C1/2y^2=1/3e^(
原式=>ydy=(x^2+y^2-x)dx令x^2+y^2=t>=0则两边分别微分得:2xdx+2ydy=dt故原式=>dt-2xdx=2(t-x)dx=>dt/2t=dx所以lnt*1/2=x+C所
1、你的曲面方程写错了,你写的是x+y+z=0,x+y+z=1,这是两个平行平面,没有交线;2、如果参数方程不好写,目测本题需要用Stokes公式;3、第二类曲线积分的对称性是有的,但是由于涉及曲线的
看到dy,deltay,∂y,初学的话就别管区别,都是一个事:y的变化量还有你的公式有问题dz不是等于∂z/∂x+∂z/∂y,是等于(