xn有界yn=o证明xnyn=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:48:42
由Xn有界,所以存在常数M>0有|Xn|0,存在自然数N,当n>N时|Yn-0|=|Yn|所以有当n>N时|XnYn-0|=|Xn||Yn|
|xn|≤M-Myn≤xn.yn≤Myn-Mlim(n->∞)yn≤lim(n->∞)xn.yn≤Mlim(n->∞)yn0≤lim(n->∞)xn.yn≤0=>lim(n->∞)xn.yn=0
{Xn}有界,说明存在N,使得│Xn│≤NlimXn×Yn≤lim(N×Yn)=N*limYn因为limYn=0所以N*limYn=0,即limXn×Yn=0
因为数列{Yn}的极限是0则对于任意的e,存在N(e),使得n>N时,|Yn|
有界函数与无穷小的乘积极限为0
这样的证明,只要举出反例来就可以了如:xn=(-1)^nyn=(-1)^n两个数列都是发散的但xnyn=1就是收敛的
证明:设存在一个正数M>0,使得一切n,都能得到Xn≦M,limXnYn((n→∞)=MlimYn((n→∞)=M*0=0
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
如果你认可我的回答,请及时点击右下角的【采纳为满意回答】按钮我是百度知道专家,你有问题也可以在这里向我提问:http://zhidao.baidu.com/prof/view/yq_whut
用定义证明即可,因为数列{Xn}有界所以存在常数C》0,使得|Xn|N时,|Yn|N的时候|XnYn|=|Xn||Yn|
详细答案在高等数学第三版第39页
证明:因为数列{Xn}有界所以不妨假设|Xn|0)因为数列{Yn}的极限是0则对于任意给出的e,总存在N,使得n>N时,|Yn|N的时候|XnYn|=|Xn||Yn|
如果存在M>0,对任意的n都有:|xn|≤M,称数列{xn}有界.所以lim(n->正无穷)Xn=M故lim(n->正无穷)XnYn=[lim(n->正无穷)Xn]*[lim(n->正无穷)Yn]=M
用极限的定义,Xn有界,则存在M使得Xn的绝对值
因为limyn=0所以对任意的ε1>0,存在N1,使n>N1时,有|yn|N时,有|xnyn|=|xn|*|yn|
由Xn有界,知道存在正实数a,使得|Xn|≤a恒成立则|XnYn-0|≤a|Yn-0|由lim(n-∞)Yn=0知道,对于任意正数ξ>0,都存在实数N,使得n>N时|Yn-0|<ξ/a,即|XnYn-
因为{xn}有界,则存在M>0,有|xn|0,存在N>0,当n>N,有|yn-0|0,当n>N,有|xn*yn-0|