xyz的二重积分 区域是x² y² z²=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 12:38:05
选用极坐标系,积分区域D:0≤θ≤π/2,0≤r≤2/(sinθ+cosθ)I=∫[0,π/2]dθ∫[0,2/(sinθ+cosθ)]e^[sinθ/(sinθ+cosθ)]*rdr=∫[0,π/2
选D利用二重积分的积分区域对称性
对X积分分两段((1,-1)前的是y=-根号x和y=根号x为下上限交点后是,y=根号x和y=x-2再问:我是先对X积分,你那是先对Y积分了
∫∫D(2x+3y)dx=∫(-1/√2→1/√2)dx∫(x²→1-x²)(2x+3y)dy=∫(-1/√2→1/√2)(2xy+3y²/2)|[x²→1-x
y=2-x²和y=2x-1的交点为:(1,1),(-3,-7)∫∫D(x-y)dxdy先积y=∫[-3→1]dx∫[2x-1→2-x²](x-y)dy=∫[-3→1](xy-(1/
使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
I=∫∫xsin(y/x)dxdy=∫x^2dx∫sin(y/x)d(y/x)=(1-cos1)∫x^2dx=(1-cos1)/3.再问:这个公式我们没学过阿,只学过x型或者y型的,或者极坐标下的。我
y=x,x+y=1,x=0所形成的交点为((1/2,1/2),(1,0)∫∫dxdy=∫[0,1/2]dy∫[y,1-y]dx=∫[0,1/2](1-2y)dy=(y-y^2)[0,1/2]=1/4
其实很简单,你只要看积分区域:1:如果该区域一个x对应了几个y,那么为x型区域;2:如果该区域一个y对应了几个x,那么为y型区域;3:如果一个区域既有x型又有y型,则需分开考虑.
作一个极坐标变换r=根号(x^2+y^2)w=arctan(y/x)则原积分变为了\int_{0,2}dr\int_{0,2pi}dwr^3=8pi看一下你的高数书上关于极坐标那一块.
二重积分∫(0)(1)x²∫(0)(x)ydydx=∫(0)(1)x²*1/2(x²-0)dx=1/2∫(0)(1)x^4dx=1/2*1/5*x^5l(0)(1)=1/
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2
∫∫√(y²-xy)dxdy=∫dy∫√(y²-xy)dx=∫dy∫√(y²-xy)(-1/y)d(y²-xy)=∫{(-1/y)(2/3)[(y²-
令x=x^2,得到x=0和x=1,所以积分区域x是在0到1之间,而且在此区域里,x>x^2显然不能直接对(sinx/x)dx进行积分,所以先对dy进行积分∫∫(sinx/x)dxdy=∫(上限1,下限
=∫(2,0)∫(2x,x)x^2+3y^2dydx=∫(2,0)8x^3dx=32
把绝对值去掉并分为三块就行了化为∫-1到1∫0到x²(x²-y)dydx+∫-1到1∫x²到1(y-x²)dydx+∫-1到1∫1到2(y-x²)dy
二重积分化为二次积分时,确定积分限是一个关键.由已知条件得,积分区域为x∈[1,4],y∈[-1,2] 先对x积分再对y积分,(如先对y积分后对x积分,区域要分二部分