XY是均匀分布,求X Y的分布

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:53:15
关于连续随机变量.已知变量X和Y是独立的,且均在[0,1]上均匀分布,现有Z=XY,求Z的方差和分布方程.

Z=XY,f(z)=∫f(x,y)dx=∫f(x)f(y)dx=∫(1/x)f(x)f(z/x)dx=∫(1/x)f(z/x)dx---z/x=t---->=∫(z-->1)(1/t)dt=Ln(1/

两个独立随机变量X、Y概率密度已知且都是均匀分布,求Z=XY分布

设x服从[a,b]的均匀分布f(x)=1/(b-a),x∈[a,b]0,其他设y服从[c,d]的均匀分布f(y)=1/(d-c),y∈[c,d]0,其他所以f(xy)=f(x)f(y)=1/[(b-a

概率论判断题 二维均匀分布的边缘分布仍然是均匀分布,答案是错的,

所谓均匀分布,就是任意一点的概率密度相等;如果二维概率密度为常数,即在一个平面内的区域均匀分布;其边缘概率密度取决于二维分布区域的形状.例如分布区域是椭圆;那么无论x边缘分布还是y边缘分布都不是常数;

均匀分布的分布函数是F(X)={0,x

x≤a和x≤b的取值参照定义对概率密度1/b-a在区间(b,x)上积分:∫1/b-adx就是x在a,b区间上的概率密度

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

设随机变量X服从(1,2)上的均匀分布,在X=x条件下,随机变量Y的条件分布是参数为x的指数分布.证明:XY服从参数为1

f(x)=1,1≤x≤2f(y|x)=xe^(-xy),y≥0f(y|x)=f(x,y)/f(x)=f(x,y)=xe^(-xy)令z=xy,z≥0F(z)=P(Z≤z)=P(XY≤z)=∫(1,2)

已知XY是实数,求式子x分之|x|+y分之|y|+xy分之|xy|的值

1)若x,y同为正数,则x分之|x|+y分之|y|+xy分之|xy|=1+1+1=32)若x,y同为负数,则x分之|x|+y分之|y|+xy分之|xy|=-1-1+1=-13)若x,y异号,比如x为正

xy+e^(xy)=1,求y的导数

该题为隐函数求导.xy+e^(xy)=1则y+xy'+e^(xy)(y+xy')=0解得:y'=-y/x解答完毕.

设随机变量X,Y相互独立,且服从[0,]上的均匀分布,求XY的概率密度

求导就得书上的答案.再问:不好意思时间过去有点长忘记题目了,不过你的那个p(x

求E(xy)的 设(X,Y)服从A上的均匀分布,其中A为由X轴,Y轴及直线X=2,Y=2围成的区域,求E(xy)

期望是1,可用公式计算.经济数学团队帮你解答.请及时评价.再问:这个四分之一何来?再答:均匀分布的定义。在某区域内的均匀分布的联合概率密度为常数,等于1/区域面积。

X的平方+xy=99求xy的值

x²+xy=99x(x+y)=9*11x(x+y)=9*(9+2)x=9,y=2

求xY的长度 

再答:采纳吧,亲再问:准确至三位有效数字再答:14.4

求dx/dy-3xy=xy^2的通解

dx/dy-3xy=xy^2dx/x=(y^2+3y)dy两边积分得:lnx=y^3/3+3y^2/2+c==>x=exp(y^3/3+3y^2/2+c)=Cexp(y^3/3+3y^2/2)C常数

设随机变量XY相互独立,都服从(0.1)的均匀分布,求z=x+y的密度函数.

fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx(1)z<0fZ(z)=∫(-∞→+∞)fX(x)fY(z-x)dx=0(2)0≤z<1fZ(z)=∫(0→z)1·1dx=z(3)1≤z<2f

两个独立随机变量X∈[a,b] Y∈[c,d].X、Y概率密度已知且都是均匀分布,求Z=XY分布密度

首先f(x,y)=1/(b-a)(d-c)(a<=x<=b;c<=y<=d)    =0elseFz(z)=P(XY<=z)(情况