x^2*cosu的不定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:21:53
令u=π/2-m,则∫cosudu/sinu+conu=∫sinmdm/cosm+sinm,
∫(lnx-1)/x²dx=-∫(lnx-1)d(1/x)=-[(lnx-1)/x-∫1/xd(lnx-1)]=-(lnx-1)/x+∫1/x²dx=-(lnx-1)/x-1/x+
用分部积分,设u=arctanx,v'=1/x^2u'=1/(1+x^2),v=-1/x,原式=-(arctanx)/x+∫dx/[x(1+x^2)]=-(arctanx)/x+∫(-x)dx/(1+
∫(ln√x)^2dx=x(ln√x)^2-∫xd(ln√x)^2=x(ln√x)^2-∫x*2ln√x*1/(2x)dx=x(ln√x)^2-∫ln√xdx=x(ln√x)^2-x∫ln√x+∫xd
∫ln²xdx分部积分=xln²x-2∫xlnx/xdx=xln²x-2∫lnxdx分部积分=xln²x-2xlnx+2∫x(1/x)dx=xln²x
∫xlnx/(1+x^2)^2dx=1/2*∫lnx/(1+x^2)^2d(1+x^2)=-1/2*∫lnxd[1/(1+x^2)]=-1/2*lnx*1/(1+x^2)+1/2*∫[1/(1+x^2
拆开然后利用分部积分∫(2-lnx)/x²dx=∫2/x²dx+∫lnxd(1/x)=-2/x+(lnx)/x-∫1/x²dx=-2/x+(lnx)/x+1/x+C
【解】复合函数求导步骤:①先简化函数,令u=x^2,则y=sinu.y对u求导得dy/du=cosu②再u对x求导得du/dx=2x总的导数就等于上述各步的导数的乘积,就是dy/dx=dy/du*du
等于sinxdx再问:具体过程再答:直接等于啊再问:不定积分再问:再答:满意答案再问:求解题过程再问:图片已发再答:再答:再答:图片发不出再答:嘿嘿再答:嘿嘿,能聊几句吗?昨天我回答你的试题,是因为我
用两次分部积分法就可以了,答案就是1/2*x^2*{(lnx)^2-lnx-1/2}+C再问:能不能给出详细解答,谢谢再答:我现在没空了啊,总之这个答案是对的
∫x/(sinx)^2dx=-∫xdcotx=-xcotx+∫cotxdx=-xcotx+ln|sinx|+C满意请好评o(∩_∩)o
=1/3∫lnxd(x^3)=1/3(x^3lnx-∫x^2dx)=1/3(x^3lnx-1/3x^3)=1/3x^3lnx-1/9x^3+c
1/(1+x^2)d(1+x^2)=ln(1+x^2)+C
原式=-∫xdcotx=-xcotx+∫cotxdx=-xcotx+ln|sinx|+c注意一定要加绝对值刚翻了翻课本
∫[(x-1)/(x^2+3)]dx=∫[x/(x^2+3)]dx-∫[1/(x^2+3)]dx=(1/2)∫[1/(x^2+3)]d(x^2+3)-(1/√3)∫{1/[(x/√3)^2+1]}d(
分部积分,结果=X^ 3 ·arctanX/3-X^2/6+In|1+X^2|/6+C,发张图给你看下我的解题过程
∫xsin^2xdx=∫xcsx^2xdx=-∫xd(cotx)=-xcotx-∫cotxdx=-xcotx-∫cosxdx/sinx=-xcotx-∫d(sinx)/sinx=-xcotx-lnsi