x^2ln(1 x)在x=0处的n阶导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 08:37:38
ln(1+x+x^2)/(x*sinx)=(x+x^2)/(s*sinx)=(x+x^2)/x^2=无穷ln(1-x+x^2)/(x*sinx)=(x-x^2)/(s*sinx)=(x-x^2)/x^
直接在点处求n阶导数代入就行了
你要求的是极值,不是最值?令y'=(2x+1)/(x²+x+1)=0得x=-1/2∵-1/2不属于〔0,1]∴在〔0,1〕上没有极值再问:不好意思打错了,应该是最值再答:∵-1/2不属于〔0
答案:3/2当x→0,【In(1+3x)^0.5】→0,2x→0本题属于0/0型,用洛必达法则有,lim[ln(1+3x)^0.5]/2x(x→0)=lim3/(2+6x)=3/2中间省略了求导部分.
参考http://zhidao.baidu.com/question/538153965.html?from=pubpage&msgtype=2
f(x)=ln(x+a)-x^2-xf'(x)=1/(x+a)-2x-1因为x=0处取得极值则f'(0)=1/a-1=0a=1f'(x)=1/(x+1)-2x-1=[1-2x(x+1)-(x+1)]/
ln(1+x)=x-x^2/2+x^3/3+,+(-1)^(n-1)*x^n/n+(-1)^n*x^(n+1)/[(n+1)(1+θx)^(n+1)(0
f'(x)=2^x*ln2+1÷(2*x+1)*2f'(0)=ln2+2
1、F(x)=g(x)-f(x)=(e^x-1)-ln(x+m)F'(x)=e^x-1/(x+m)当x=0时,F'(x)=0,即e^0-1/(0+m)=0,m=1F'(x)=e^x-1/(x+1)当x
相等,ln(a^b)=b*lna
2个0点一个,小于0的地方有一个给分后再给详细分析
1、y=x-ln(1+x)的定义域是:(-1,正无穷)y对x求导,令导数=0:dy/dx=1-1/(1+x)=0x=0当-1=0.那么,当X>0时,y=x-ln(1+x)>0所以,x>ln(1+x)
1.f'(X)=1/(X+A)-2X-1f(x)在x=0处取得极值所以f'(X)=1/(X+A)-2X-1=0所以a=02.由题意(图形)可知f(2)>=f(0)=b>=-4/5好长时间没做这些数学题
求导可得在x=1处取最大值ln2-1/4比较两端点有最小值为0再问:过程再答:求函数的单调区间,直接对函数求导啊,然后找导函数的零点,判断函数的正负就ok了,在某个区间内求最值。先判断在这个区间是是不
这个直接展开成x的多项式形式就好了先用泰勒公式展开ln(1+x)=((-1)^n)*(1/n)*x^n然后把x^2乘进去就好了!即f(x)=x^2ln(1+x)=((-1)^n)*(1/n)*x^n+
你说的正确,求f(x)的n阶导数时需要知道泰勒展开的n次项的系数,因为前面有x^2,后面就展开到n-2次以凑出x^n.另外(-1)^(n-3)=(-1)^(n-1),两写法没什么不同.这个题也可以用求
用等价无穷小替换和洛必达法则,原式=lim(x→0)(arcsinx-x)/(2x^3)=lim(x→0)(1/√(1-x^2)-1)/(6x^2)=lim(x→0)(1-√(1-x^2))/(6x^
因为根据y=x^(1/3)的图像可知,当x趋于0时,函数的图像与y轴相切,并且无限趋近于y轴,所以在0这一点的导数为tan90,tan90为正无穷大,所以在0处不可导.按照导数的定义y=e^(x^2/