x³sin²x (1 cos^4x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:47:17
已知sin X+cos X=m,|m|小于等于根号2且|m|不等于1,求sin X^3+cos X^3,sin X^4+

sinx+cosx=m平方sin²x+cos²x+2sinxcosx=m²1+2sinxcosx=m²sinxcosx=(m²-1)/2所以sin&s

f(x)=(1+cos2x)/[4sin(pai/2+x)]-asin(x/2)cos(pai-x/

诱导公式f(x)=(1+2cos²x-1)/(4cosx)+asin(x/2)cos(x/2)=(cosx)/2+a/2*sinx=(a/2)sinx+(1/2)cosx=√[(a/2)&s

MATLAB画图,y=sin(x)*(cos(x)-1)/((2*sin(x.^2)+4*cos(x)).^0.5)-(

大哥!   x=0,pi/2时y的值不一样!再问:怎么会不一样呢,都是-0.866再答:前半部分都是0,后半部分就一个cosx。一个是x=0,y=sqrt(2)/2x=pi/2,y=0再问:我的计算式

化简2sin^2[(π/4)+x]+根号3(sin^x-cos^x)-1

2sin^2[(π/4)+x]+根号3(sin^x-cos^x)-1=-(1-2sin^2[(π/4)+x)-√3cos2x=-cos(π/2+2x)-√3cos2x=sin2x-√3cos2x=2[

三角等式求证:cos^6x+sin^6x=1-3sin^2x+3sin^4x

用公式a³+b³=(a+b)(a²-ab+b²)cos^6x+sin^6x=(cos²x)³+(sin²x)³=(cos

∫[1/(sin^2(x)cos^4(x)]dx

求采纳.再问:图不太清楚但谢谢啦😊

三角函数极限题Limit,x -> 0 {Cos[Sin(x)] - Cos(x)} / (Sin(x))^4答案是1/

这个题目要用到泰勒公式,当x趋向于0时sinx=x-1/6x^3+o(x^3),cosx=1-1/2x^2+o(x^2)记住一个吸收原则o(x^2)+o(x^3)=o(x^2).用L‘hospital

根号下(sin""x+4cos"x)-根号下(cos""x+4sin"x)=?

√[(sinx)^4+4(cosx)^2]-√[(cosx)^4+4(sinx)^2]=√[((sinx)^2-2)^2]-√[((cosx)^2-2)^2]=(sinx)^2-2-[(cosx)^2

lim(sin(x^2*cos(1/x)))/x怎么做?

题目应该是当x逼近到0得时候,limx^2*cos(1/x)=0lim(sin(x^2*cos(1/x)))/x=lim(x^2*cos(1/x))/x=lim(x*cos(1/x))=0再问:你用罗

化简[1-(sin^4x-sin^2cos^2x+cos^4x)/(sin^2)]+3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x

2cos x (sin x -cos x)+1

2cosx(sinx-cosx)+1=2sinxcosx-2cosx^2+1=sin2x+1-2cosx^2=sin2x-cos2x=√2sin(2x-π/4)

sin(1/x)-cos(1/x)/x

该函数在x=0处的左右极限都没有比如x=1/(2npi+pi/2)时,f(x)=1x=1/(2npi-pi/2)时,f(x)=-1取n->无穷大所以在x=0处没有右极限,左极限同理

求证(cos^2 x-sin^2 x)(cos^4 x+sin^4 x)+1/4 sin 2x sin 4x=cos 2

证明:∵cos²x-sin²x=cos2xcos⁴x+sin⁴x=1-2cos²xsin²x=1-(1-cos4x)/4=3/4+(co

证明sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=3/4

sin^2(x)+cos^2(x+30)+sin(x)cos(x+30)=sin^2(x)+cos(x+30)[cos(x+30)+sinx]=sin^2(x)+cos(x+30)(cosxcos30

求证 sinˇ4X+sin²Xcos²X+cos²X = 1

证明:因为左边=sin²X(sin²X+cos²X)+cos²X=sin²X+cos²X=1=右边,所以:(sinX)^4+sin²

用cos x表示sin^4 x -sin^2 x +cos^2 x

sin^4x-sin^2x+cos^2x=sin^2x*(sin^2x-1)+cos^2x=-sin^2x*cos^2x+cos^2x=cos^2x*(1-sin^2x)=cos^2x*cos^2x=

(1-(sin^4x-sin^2xcos^2x+cos^4x)/sin^2x +3sin^2x

sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x