x在(0~1)上均匀分布,则x的函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:08:33
设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

概率论与数理统计题目1.设随机变量X和Y独立,X在(0,2)上服从均匀分布,Y在(0,4)上服从均匀分布,则下列式子正确

1.f(x,y)=1/8,0≤x≤2,0≤y≤4;=0,其它.0≤x≤2,0≤y≤4.非零定义域是一个矩形.(X>Y)是矩形中的下三角形,面积为总面积的1/4.所以,P(X>Y)=1/4.2.f(x)

概率论!设随机变量X服从[1,4]上的均匀分布,则P{X>2}=?谢谢!

既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

二维随机变量(X,Y)在D:0≤x≤2,-1≤y≤1上均匀分布,则(X,Y)联合密度函数f(x,y)=,X边缘概率密度f

再问:X的边缘概率密度函数具体求导过程,谢谢再答: 就是对联合分布函数的y进行积分即可

随机变量X与Y相互独立且都服从区间(0,1)上的均匀分布,则下列随机变量中服从均匀分布的有

Cx,y独立,所以XY二维平面上(x,y)各自(0,1)区间的正方形也是均匀分布的.A明显不对,可以随便取一个0到1的值反证.B和D的分布在XY二维图中是斜着的两条直线,能直接看出来不是均匀分布.再问

设随机变量X在(0,1)上服从均匀分布,(1)求Y等于绝对值X的概率密度.

Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0

设随机变量x在区间[0,4]上服从均匀分布,则p{1<X<3}=?

若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X

随机变量X,Y相互独立,且均在(0,1)上均匀分布,则D(XY)为多少?

D(X)=D(Y)=(1-0)^2/12=1/12∵X与Y相互独立∴D(XY)=D(X)D(Y)=1/144再问:这应该是算E(XY)的方法吧?再答:E(XY)=EX·EY这是不需要条件的,独立时D(

设随机变量X在(0 1)上服从均匀分布 随机变量Y在(0 2)上俯冲均匀分布 且X与Y相互独立 求Z=Y-2X的分布函数

先求fx=1fy=1/2然后根据z<-2-2≤z<00≤z<2z≥2分别进行进行积分求F(z)再根据F(z)求密度函数fz.