X在负π 2服从均匀分布,则Y等于cosx的概率密度函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:33:39
设平面区域D由y=x,y=0和x=2所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于x的边缘概率密

均匀分布因此设f(x,y)=k.二重积分上下限分别(0,y)dx和(0,2)dy得2k=1,k=0.5因此f(x,y)=0.5,f(x)=积分0.5,上下限分别(0,x)dy=0.5x因此F(X)=0

随机变量x与y相互独立,且他们分别在区间(-1,3)和(2,4)上服从均匀分布,则E(xy)=?

E(x)=(-1+3)/2=1,E(y)=(2+4)/2=3.而x与y相互独立,于是E(xy)=E(x)E(y)=3.

已知随机变量X与Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=

均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1

已知随机变量X与Y相互独立,且它们分别在区间【-1,3』和【2,4】上服从均匀分布,则E(XY)=

相互独立的随机变量,有E(XY)=E(X)E(Y)E(X)=1E(Y)=3所求=3

假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

设随机变量X服从正态分布N(10,4),Y在区间[0,6]上服从均匀分布,且X与Y相互独立,则D(2X-3Y)=?

用方差性质如图计算,答案是43.经济数学团队帮你解答,请及时采纳.谢谢!

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

设随机变量X,Y相互独立,X服从λ=5的指数分布,Y在[0,2]上服从均匀分布,求概率P(X≥Y)

XY相互独立,那么XY联合分布密度f(x,y)=fx(x)*fy(y)fx(x)=5e^(-5x)fy(y)=1/2P(X>=Y)=∫∫f(x,y)dxdy=∫(0,2)1/2∫(y,∞)5*e^(-

概率论与数理统计题目1.设随机变量X和Y独立,X在(0,2)上服从均匀分布,Y在(0,4)上服从均匀分布,则下列式子正确

1.f(x,y)=1/8,0≤x≤2,0≤y≤4;=0,其它.0≤x≤2,0≤y≤4.非零定义域是一个矩形.(X>Y)是矩形中的下三角形,面积为总面积的1/4.所以,P(X>Y)=1/4.2.f(x)

设x和y是相互独立的两个随机变量,且x服从(-1,2)上的均匀分布,y服从y~N(1,4)则D(XY)=

解题思路了讲到这后面的积分自己先积一积不懂追问再问:谢谢,明白了,但是木有更简单一点的么~~~~~再答:放心~是没有捷径滴而且这样做计算量不算很大,耐心一点就行了

随机变量X服从[0,π/2]上的均匀分布,Y=cosX,求Y的概率密度

X服从[0,π/2]上的均匀分布故fx(x)=2/πFy(y)=P(Y

设随机变量X在(-π/2,π/2)上服从均匀分布,试求随机变量Y=sinX的密度函数

先求出分布函数的关系如图,再求导得出Y的概率密度.经济数学团队帮你解答,请及时采纳.