X服从标准正态分布,Y=X²,求Y的概率密度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:57:23
两个独立的随机变量 X 与Y 都服从标准正态分布,求 Z=X+Y 的概率密度.

用卷积公式求得Z的概率密度函数,配方太麻烦所以提到最前面写.与x无关的项作为“系数”提到关于X的积分外面,然后构造关于x的正太分布密度函数积分,积分结果=1,积分号以外的“系数”就是要求的结果,为目标

概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

概率论中的问题设随机变量X ,Y均服从标准正态分布则 其中有选项A .X+Y服从正态分布,该选项错误,请问为什么?

你好!定理是当X与Y独立时,X+Y服从正态分布,而当X与Y不独立时,X+Y不一定服从正态分布。经济数学团队帮你解答,请及时采纳。谢谢!

设随机变量X和Y都服从标准正态分布,则(  )

对于选项(A):两个随机变量X和Y都服从标准正态分布,但它们的和不一定服从正态分布,因为X和Y不是相互独立的.倘若X和Y相互独立或者X和Y的联合分布为正态分布,则可以推出X+Y服从正态分布,否则不一定

设X,Y相互独立,且都服从标准正态分布,则Z=X/根号下Y^2服从( ) 分布,并写出分布的参数

Z的分布叫做瑞利(Rayleigh)分布,具体求法:f(x,y)=[1/(2πσ^2)]*e^-[(x^2+y^2)/2σ^2]当z=0时,有:F(z)=∫∫f(x,y)dxdy,其中积分区域为x^2

假设随机变量X和Y相互独立,服从标准正态分布,求随机变量Z=X/Y的概率密度.

联合密度函数f(x,y)=f(x)*f(y)=(1/2π)e^[-(x^2+y^2)/2]画图可知(X为纵坐标,Y为横坐标)是的Z

X,Y相互独立.他们都服从标准正态分布N(0,1).证明Z=X^2+Y^2服从λ=1/2的指数分布

有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释

已知随机变量X服从标准正态分布,且Y=2X^2+X+3,则X与Y是否相关 是否独立

Cov(Y,X)=Cov(2X^2+X+3,X)=2Cov(X^2,X)+Cov(X,X)+0Cov(X,X)=Var(X)=1Cov(X^2,X)=E(X^2X)-E(X^2)E(X)=E(X^3)

设x服从标准正态分布,求:1,x的概率密度,2,Y=x平方的概率密度

1,X的密度函数f(x)=1/√(2π)*exp(-x^2/2)2,设y>0P(Y≤y)=P(-√y≤X≤√y)=1/√(2π)*积分(-√y到√y)exp(-x^2/2)dx=2/√(2π)*积分(

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X 服从正态分布 N(μ,σ^2),y=ax+b 服从标准正态分布,则a=?,b=?

YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

x,y互相独立且服从标准正态分布,则f(x,y)也服从正态分布吗?

1.独立的正态分布的联合分布也服从正态分布.2.没关系.3.去掉独立后,结论不成立.4.由分布密度来判断是否是二维正态分布.

随机变量X服从正态分布N(u1, ),Y服从正态分布N(u2, ),X与Y独立,则X+Y服从

(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或

设随机变量X与Y独立,且X服从均值为1、标准差(均方差)为2的正态分布,而Y服从标准正态分布.

由已知X服从均值为1、标准差(均方差)为2的正态分布,所以X−12~N(0,1),E(X)=1,D(X)=2;由Y服从标准正态分布,所以:Y~N(0,1),E(Y)=0,D(Y)=1;又X、Y相互独立

概率论求解答.设随机变量X服从标准正态分布,求随机变量Y=1-2|X|的分布密度.

再问:为什么那里要加绝对值?再答:公式。针对单调增和单调减