x等于x的期望
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:07:02
P{X=k}=e^(-a)a^(k)/k!1=sum_{k=0->正无穷}P{X=k}=sum_{k=0->正无穷}e^(-a)a^(k)/k!E{1/(X+1)}=sum_{k=0->正无穷}e^(
E(X)表示期望.期望是密度函数乘以x的全域积分.不等于分布函数乘于x如有意见,欢迎讨论,共同学习;如有帮助,
X在(0,4)均匀分布.期望为2.
老兄,解答在图片上,给你回答还真费劲啊
你理解得基本正确,但书上也没说错.注意这里说的“一个样本”换句话说就是“任意一组n个数据”.那么对于任意的这样一组数(一个样本),你能算出个平均值(X的一个可能取值),那这个所谓的X不就是个随机变量了
例如X0123Pk0.10.30.40.2数学期望EX上下相乘再相加
设x平方=y,y服从卡方分布,EY=1,DY=2,EY^2=DY+(EY)^2=2+1=3再问:请问一下卡方分布中为什么方差D(Y)=2!!谢谢了!!再答:教材上应该有证明过程,EX=N,DX=2N记
B(n,p),EX=np,DX=np(1-p)∵E【X²】=DX+(EX)²所以E【X²】=np(1-np)+(np)²再问:连续和离散随机变量都符合这个E【X
正态分布有一个性质是“独立和不相关等价”原题说x,y独立,所以他们相关系数是0;又因为Cov(x,y)=E(xy)-ExEy,原题的结论显然.
Exy=Ex^2+Ey^2+Ex+Ey前提是XY独立再问:是E(y^2)还是Ey^2再答:E(y^2)
是随机变量X的方差
N(0,1)则Y=X^2~卡方分布X^2(1)所以EX^2=1E(X^4)=DY+(EY)^2=2+1=3E(X^5)=0.pdf概率密度函数关于y对称.
你写错了,X平方的期望是1,而X的4次方的期望才是3.
是E(X^2)=∫(ax)^2*f(x)dx吧具体公式是E(g(x))=∫g(x)*f(x)dx这里把g(x)看成x的一个函数,x的密度是不会改变的,而每个x的值对应一个g(x)值所以f(x)也是g(
解题思路:本题主要充分理解正态分布的意义,u即是数学期望,也是正态分布密度函数的对称轴.解题过程:正态分布是连续型的随机变量,记作X-N(u,g2),其中u为期望,也是正态分布密度函数的对称轴,g2是
因为E(C)=C【常数的期望是常数】E(X)=C【X的期望是个常数】于是E[E(X)]=E(X)………………E(X*X)=C【X*X的期望是常数】于是E[E(X*X)]=E(X*X)E(X+C)=E(
是的.E(g(x))=∫g(x)f(x)dx再问:你好,我还想问一下,E(X+常数)=EX+常数吗?再问:你好,我还想问一下,E(X+常数)=EX+常数吗?再答:是的,这是期望的性质。书上有的,书上也
相等你可以举例子试试就随便举例子不对你打我.再问:有什么理论依据吗?再答:好像不等我看错了题目证明:一组数据abcd,期望是a/4b/4c/4d/4期望和是(a+b+c+d)/4这四个数的和是a+b+
因为Xk是随机变量,它们与X都是同分布的.