y=ln(x 根号下3 x^2)的反函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:38:42
y(-x)=ln(-x+√(1+x^2))=ln[1/(x+√(1+x^2))]=-ln(x+√(1+x^2))=-y(x)所以是奇函数再问:麻烦你能不能在详细点啊谢谢!
解题思路:利用指数与对数的关系式以及反函数的概念来解答.解题过程:
先确定定义域,R,关于原点对称f(-x)=㏑(-x+√(1+(-x)²))=㏑(√(1+x²)-x)=㏑(1/(√(1+x²)+x))=-㏑(√(1+x²)+x
再答:���Ϻ����
两边相加都是0,没啥意义啊,我有一种方法
y'=1/(x+根号下x^2+1)*(x+根号下x^2+1)'=1/(x+根号下x^2+1)*(1+x/根号下x^2+1)=1/(x+根号下x^2+1)*(根号下x^2+1+x)/根号下x^2+1=1
=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]
y=1/2[ln(1+x^2)-ln(1-x^2)]y'=1/2[2x/(1+x^2)-(-2x)/(1-x^2)]=x/(1+x^2)+x/(1-x^2)=2x/(1-x^4)
y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x
1)这两个函数对所有实数有定义;2)ln[-x+根号下(x^2+1)]=ln[1/(x+根号下(x^2+1))]=-ln[x+根号下(x^2+1)]
在R上单调递增
y'=1/[x+√(x2+a2)]×[x+√(x2+a2)]'=1/[x+√(x2+a2)]×【1+x/√(x2+a2)】=1/[x+√(x2+a2)]×【[x+√(x2+a2)]/√(x2+a2)】
y=根号下1+ln(x^2)+e^(2x)y′=1/2(1+ln(x^2)+e^(2x))ˆ(-1/2)(2/x+2e^(2x))=(2/x+2e^(2x))/2√(1+ln(x^2)+e^
1,y=ln(1-x)y'=1/(1-x)*(1-x)'=1/(1-x)*(-1)=1/(x-1);2,y=ln[1/√(1-x)]=-ln√(1-x)y'=-1/√(1-x)*[√(1-x)]'=-
y'=arctanx加x/(1加x^2)-x/(1加x^2)=arctanx再问:有详细步骤吗?
y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)
y-x^2>01-y-x>=0所以x^2
y=ln(4-x^2)+arcsin(x-1/2)+1/³√x∴{4-x²>0{-1≤x-1/2≤1{x>0==>{-20
由题意可得:x^2-2x02x-1不等于1联立解得1/2