y=lnx,y=lna,y=lnb,x=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:49:34
x=1时,最大值-1
基本前提:(e^x)'=e^x,复合函数求导公式y=a^x=e^(xlna)因为(e^x)'=e^x所以y'=(xlna)'*e^(xlna)=lna*(a^x)=a^x*lna
lny=lnx*lnx=(lnx)^2对x求导(1/y)*y'=2lnx*(lnx)'=2lnx/xy=(lnx)^x所以y'=2(lnx)^x*lnx/x
算出不是一个范围只有-0.5先求出a=1f(x)=ae^x,f(0)=a,与y轴的交点(0,a),f′(x)=ae^x,f′(0)=a;g(x)=lnx-lna,g(a)=lna-lna=0,与x轴的
二十年教学经验,专业值得信赖!敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了.
对于这样的复合函数,求导就用链式法则,对各个函数逐个求导,在这里y=arctan(lnx),可以令lnx=t,那么y'=(arctant)'*t',显然(arctant)'=1/(1+t²)
y=(lnx)^x则lny=xln(lnx)两边求导y'/y=ln(lnx)+x*(1/lnx)*(1/x)即y'/y=ln(lnx)+1/lnx所以y'=y*[ln(lnx)+1/lnx]=(lnx
我发图了如是求不定积分就容易了,就是(lnx)^x+C
用复合函数求导(u/v)'=(u'v-uv')/v^2y=lnx/x则y'=(1-lnx)/x^2f(x)=sinx/2f'(x)=1/2cos(x/2)f'(π/3)=√3/4
该图形为近似直角梯形,用积分的方法求解将梯形用平行于x轴的直线无限分割,得到无限多的近似小长方形,长为e^y,宽为dy,小长方形的面积为dS=e^y*dy,积分结果为S=e^y对y从lna到lnb进行
y=xsinlnx+xcoslnxy'=[xsinlnx]'+[xcoslnx]'=[1*sinlnx+xcoslnx*1/x]+[1*coslnx-xsinlnx*1/x]=sinlnx+cosln
这个是幂指函数,求导不能看作指数函数或幂函数求.这个可以用对数求导法则去算的即lny=lnx·lnx
1y=lnx=>x=e^y所求面积就是x=e^y和y轴间的面积,积分上限x=b,下限x=a,答案e^b-e^a2∫(e^x-e^-x)dx0-1结果e+1/e-23∫(y+1)-(y^2/2-1/2)
y=(1+x-x^2)/(1-x+x^2)y'=[(1+x-x^2)'*(1-x+x^2)-(1+x-x^2)*(1-x+x^2)']/(1-x+x^2)^2=[(-2x+1)*(1-x+x^2)-(
-2除以x乘以lnx