y=xsin1 x的可导性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:41:37
微分方程的解y'=y/(y-x)

解法一:∵y'=y/(y-x)==>(y-x)y'=y==>(y-x)dy=ydx==>ydy=ydx+xdy==>d(y²)=2d(xy)==>y²=2xy+C(C是积分常数)∴

求微分方程y'=x/y+y/x的通解

y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算

y=立方求y的导数,[y]导数

你能拍张照片吗?再问:再答:再答:y(1)是一个常数吧,那常数的导数不是0吗?呵呵,不用再算了啊!再答:呵呵!再问:帅哥下面这个麻烦也写一下谢谢了再答:题呢?再问:第二个题是[y]求导数再答:不是说了

(2x-y^2)y’=2y的通解

求微分方程(2x-y²)y'=2y的通解由原式得:(2x-y²)dy=2ydx,即有2ydx+(y²-2x)dy=0.(1)P=2y,Q=y²-2x;ͦ

y''-2y'+y=e^-x的通解

特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a

y''+2y'+y=x的通解

∵齐次方程y"+2y'+y=0的特征方程是r^2+2r+1=0,则r=-1(二重根)∴此齐次方程的通解是y=(C1x+C2)e^(-x)(C1,C2是常数)∵设原方程的解为y=Ax+B代入原方程,得A

求微分方程y"-2y'+y=0的通解.

你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!

(x+y)y'+(x-y)=0的通解

详见:http://hi.baidu.com/%B7%E3hjf/album/item/5fa110df8b26067395ee37a7.html

求y'=y/(y-x) 的通解

1.y=0且x≠0时,满足原方程2.y≠0时,由已知dy/dx=y/(y-x)得dx/dy=(y-x)/y=1-x/y令x/y=u,则原方程化为u+y(du/dy)=1-u即du/(1-2u)=dy/

微分方程y''+4y'+4y=8的通解

孩纸这是有公式的,自己翻下书!r^2+4r+4=0r1=r2=-2则通解y=(c1+c2X)e^-2x

求此微分方程的通解:y''+y'=y'y

令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(

求微分方程y''+y'-y=0的通解

答:特征方程为:r^2+r-1=0所以特征根为:r1=(-1+√5)/2,r2=(-1-√5)/2所以通解为:y=C1e^((-1+√5)/2)+C2e^((-1-√5)/2)

微积分y’’+2y’+5y=0的通解

特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin

求微分方程y''+y'-2y=0 的通解.

设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c

求微分方程y"-y'-2y=0的通解

特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)

微分方程y"+y'+2y=0的通解

对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)

y'''+2y''+y'=0的通解

这是高阶齐次线性微分方程,采用求特解的方法.原方程的特征方程是

(管理、文科)极限limx→0xsin1x=(  )

由三角函数的定义可知:|sin1x|<1,由函数极限的性质可知:limx→0x=0故有:limx→0xsin1x=0故选择:B.

微分方程的一道题 y''(x+y'^2)=y'

这样解设y'=dy/dx=t,y''=d2y/dx2=dt/dx,带入得到t'(x+t^2)=t这样可以化成恰当方程dt=dx/t-x/t^2*dt=d(x/t)解得y'=t=(自己会算吧~)再积分一