y=xsin1 x的可导性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:41:37
解法一:∵y'=y/(y-x)==>(y-x)y'=y==>(y-x)dy=ydx==>ydy=ydx+xdy==>d(y²)=2d(xy)==>y²=2xy+C(C是积分常数)∴
y/x=ty=txy'=t+x*dt/dx=t+1/tx*dt/dx=1/ttdt=dx/x然后再算
你能拍张照片吗?再问:再答:再答:y(1)是一个常数吧,那常数的导数不是0吗?呵呵,不用再算了啊!再答:呵呵!再问:帅哥下面这个麻烦也写一下谢谢了再答:题呢?再问:第二个题是[y]求导数再答:不是说了
求微分方程(2x-y²)y'=2y的通解由原式得:(2x-y²)dy=2ydx,即有2ydx+(y²-2x)dy=0.(1)P=2y,Q=y²-2x;ͦ
特征方程r^-2r+1=0r=1(二重根)所以齐次通解是y=(C1x+C2)e^x设特解是y=ae^(-x)y'=-ae^(-x)y''=ae^(-x)代入原方程得ae^(-x)+2ae^(-x)+a
=-(xy^2)^4+3(xy^2)^3+(xy^2)^2=-27-27-3=-57
∵齐次方程y"+2y'+y=0的特征方程是r^2+2r+1=0,则r=-1(二重根)∴此齐次方程的通解是y=(C1x+C2)e^(-x)(C1,C2是常数)∵设原方程的解为y=Ax+B代入原方程,得A
你这个是二阶常系数齐次线性微分方程属于r1=r2=1的情况代入公式,y=(C1+C2x)e^(r1x)=(C1+C2x)e^x好好看看书,公式要记得!
详见:http://hi.baidu.com/%B7%E3hjf/album/item/5fa110df8b26067395ee37a7.html
1.y=0且x≠0时,满足原方程2.y≠0时,由已知dy/dx=y/(y-x)得dx/dy=(y-x)/y=1-x/y令x/y=u,则原方程化为u+y(du/dy)=1-u即du/(1-2u)=dy/
孩纸这是有公式的,自己翻下书!r^2+4r+4=0r1=r2=-2则通解y=(c1+c2X)e^-2x
令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(
答:特征方程为:r^2+r-1=0所以特征根为:r1=(-1+√5)/2,r2=(-1-√5)/2所以通解为:y=C1e^((-1+√5)/2)+C2e^((-1-√5)/2)
特征方程a^2+2a+5=0有共轭复根-1+2i,-1-2i所以通解为y=e^(-x)(C1cos2x+C2sin2x)再问:C1��ʲô再问:�������e��-x��再问:�躯��xe��sin
设y=e^ax带入y''+y'-2y=0求导化简得a^2+a-2=0(a-1)(a+2)=0a=1,a=-2通解为y=e^x+e^-2x+c
特征方程为r²-r-2=0解得r1=2,若=-1∴原方程的通解为:y=C1e^(2x)+C2e^(-x)
对应的特征方程是a^2+a+2=0,解得a是α±iβ的形式的,那么通解就是c1*e^(αx)*sin(βx)+c2*e^(αx)*cos(βx)
这是高阶齐次线性微分方程,采用求特解的方法.原方程的特征方程是
由三角函数的定义可知:|sin1x|<1,由函数极限的性质可知:limx→0x=0故有:limx→0xsin1x=0故选择:B.
这样解设y'=dy/dx=t,y''=d2y/dx2=dt/dx,带入得到t'(x+t^2)=t这样可以化成恰当方程dt=dx/t-x/t^2*dt=d(x/t)解得y'=t=(自己会算吧~)再积分一