y=根号π 4arcsinx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:41:39
y=e^arcsinx 求dy

y=e^arcsinx求dy=e^(arcsinx)×1/√1-x²dx;如果本题有什么不明白可以追问,

函数y=sinx+arcsinx的值域是

arcsinx的定义域是[-1,1]而sinx在[-1,1]上是增函数所以,在-1上,sinx+arcsinx取最小值sin(-1)-pai/2=-sin1-pai/2在1上,sinx+arcsinx

求y=arcsinx+根号下1-x2的导数.(注:x2是x的平方)

分别求导.前面的反三角函数是1+X^2分之一后面用复合函数求导法则,根号1-X^2分之一乘以2X两个相加.

求反正弦函数y=arcsinx的导数,1/cosy=1/根号下1-x^2这里怎么得出的

y=arcsinx得x=siny两边对x求导,把y看成是复合函数,有1=y'cosy得y'=1/cosy而cosy=√(1-sin²y)=√(1-x²)

y=arctanx,arcsinx,arccosx,求导分别为什么?

1/(1+x^2)再答:1/(根号下1+x^2)再答:-1/(根号下1+x^2)

求导数y=arcsinx根号下1-x/1+x求导

y=arcsinx.√[(1-x)/(1+x)]y'=(1/2)√[(1+x)/(1-x)].[-2/(1+x)^2].arcsinx+√[(1-x)/(1+x)].[1/√(1-x^2)]=-√[1

y=x乘以根号下1+x^2 +arcsinx 的导数是什么

根号下1+x^2+arcsinx+根号下1+x^2+arcsinx乘以(2x+1/根号下x^2+1)

y=√arcsinx - π/4 (π/4在根号里) 求函数的定义域

是啊很简单arcsinx-π/4>=0arcsinx>=π/4根据y=arcsinx的图象就可以解出来

求下列函数得导数急y=x根号(1-X平方)+arcsinx

y=x√(1-x²)+arcsinxy'=x'√(1-x²)+x[√(1-x²)]'+(arcsinx)'=√(1-x²)+(1-x²)'•

y=arcsinx/2,为什么导数是1/根号4-x^2

因为y=arcsinxx=sinyy'*x'=1(arcsinx)'*(siny)'=1y'=1/(siny)'=1/(cosy)=1/sqrt(1-x^2)

高数中y=arcsinx-1/2是什么意思

就是一个函数啊再问:什么函数?再答:随便一个函数,没有特殊意义再问:?

y=根号下(π+4arcsinx)的反函数,并求定义域

化简结果为arcsinx=(y^2-π)/4则反函数为y=sin(x^2/4-π/4)又u=arcsin(x)的值域为[-π/2,π/2]所以原函数值域为[0,根号3π]所以反函数定义域为[0,根号3

高数中,为什么y=arcsinx是单调函数,而y=Arcsinx却是多值函数?

y=Arcsinx它是y=sinx的反函数,关于y=x对称,则y=arcsinx的图像是立起来的,对于一个x在[-1,1],有无数个解和它对应,故是多值函数.

y=arcsinx求其导数时,x∈[-1,1].为什么y的值域是[-π/2,π/2]?

函数y=sinx,(x∈[-π/2,π/2],y∈[-1,1])在[-π/2,π/2]是单调递增函数,保证[-π/2,π/2]到[-1,1]的映射是一一映射从而函数y=sinx,(x∈[-π/2,π/

arcsinx+arctg1/7=π/4,则x=

arcsinx+arctg1/7=π/4tan(arcsinx+arctg1/7)=tan(π/4)=1〔tan(arcsinx)+tan(arctg1/7)〕/(1-tan(arcsinx)tan(

求函数y=ln(4-x^)+arcsinx-1/2+1/3次根号下x的定义域

y=ln(4-x^2)+arcsin(x-1/2)+1/³√x∴{4-x²>0{-1≤x-1/2≤1{x>0==>{-20

arcsinx+arctanx=π/2 求X

因为arcsinx+arccosx=π/2(公式)arcsinx+arctanx=π/2所以arccosx=arctanx令arccosx=arctanx=BcosB=xtanB=xcosBtanB=

y=(根号1-x2)arcsinx导数

y=√(1-x²)*arcsinx,那么y'=[√(1-x²)]'*arcsinx+√(1-x²)*(arcsinx)'显然[√(1-x²)]'=-2x/2√(

求y=arcsinx+sinx的值域

定义域是[-1,1]此范围内arxsinx和sinx都是递增所以值域是[-π/2-sin1,π/2+sin1]