z=xsin(xy)的两个一阶偏导

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:49:07
求下列一阶线性微分方程的通解:y'-y=xy^5

令z=1/y^4,则y'=-y^5z'/4代入原方程,化简得z'+4z=-4x.(1)∵方程(1)是一阶线性微分方程∴由一阶线性微分方程求解公式,得方程(1)的通解是z=1/4-x+Ce^(-4x)(

设f(x,y)具有一阶连续偏导数,z=xf(x^y,e^xy),求dz

根据一阶全微分形式不变得dz=d(xf(x^y,e^xy)=f(x^y,e^xy)dx+xd(f(x^y,e^xy))=f(x^y,e^xy)dx+x[f1'd(x^y)+f2'(de^xy)]=f(

设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x

∂z/∂x=(∂f(u,v)/∂u)*(∂u/∂x)+(∂f(u,v)/∂v)*(∂v/&#

设z=f(x^2+y^2,xy),其中f具有一阶连续偏导数,求z的偏导数

令u=x^2+y^2,v=xy得∂z/∂x=(∂f/∂u)(∂u/∂x)+(∂f/∂v)(∂

z=xsin(xy).则dz z| x=1 y=1的全微分是

dz=[sin(xy)+xycosxy]dx+(x^2cosxy)dydz|(1,1)=(sin1+cos1)dx+cos1dy再问:先求dx,dy,详细过程谢谢再答:=sin(xy)+xycosxy

求方程sin(xy)=x确定的隐函数的一阶导数.

方程两边对变量x求导有d[sin(xy)]/dx=dx/dxcos(xy)*d(xy)/dx=1cos(xy)*(dx*y+x*dy)/dx=1cos(xy)*[y+x*(dy/dx)]=1所以:dy

z=sin(xy)+cos^2(xy)一阶偏导数

∂Z/∂x=y*cos(xy)-2cos(xy)*sin(xy)*y=y*cos(xy)-y*sin(2xy)∂Z/∂y=x*cos(xy)-2cos(

求由方程e^z=xyz所确定的函数z=z(x,y)的一阶偏导数

对x求导,e^z*z'(x)=yz+xyz'(x),z'(x)=yz/(e^z-xy)对y求导,e^z*z'(y)=xz+xyz'(y),z'(y)=xz/(e^z-xy)

z=f(x,2x+y,xy),f有一阶连续偏导数,求dz

再问:可以再帮我答题吗,我这边有很多财富值可以给你再问:

6、设z=(x^2)*ln(2xy),求z对x的一阶,二阶偏导数,和z对y的一阶,二阶偏导数

z=(x^2)*ln(2xy),Zx=(2x)ln(2xy)+(x^2)/2xy*(2xy)'=(2x)ln(2xy)+xZxx=2ln(2xy)+(2x)/2xy*(2xy)'+1=2ln(2xy)

设函数z=f(xy,e^x+y),其中f.,求一阶偏导数?

令u=xy,v=e^(x+y)Z'x=Z'u*U'x+Z'v*V'x=f'u*y+f'v*e^(x+y)Z'y=Z'u*U'y+Z'v*V'y=f'u*x+f'v*e^(x+y)

求导:已知y=cos(xy),求y的一阶导数

对两边分别求导,得dy/dx=-sin(xy)*(x*dy/dx+y)则dy/dx(1+sin(xy)*x)=-sin(xy)*y所以dy/dx=(-sin(xy)*y)/(1+sin(xy)*x)

大一的微积分~求μ=f(x,xy,xyz),z=φ(x,y)的一阶偏导数

f1表示f对第1个变量求导数,其余类推.∂μ/∂x=f1+f2(y)+f3(yz+xy∂φ/∂x)=f1+yf2+y(z+x∂φ/ͦ

z=ln(tanx/y)的一阶偏导数

(1)z=ln(tanx/y)dz/dx=1/(tanx/y)*(sec²x/y)=sec²x/tanxdz/dy=1/(tanx/y)*(-tanx/y²)=-1/y(

求z=根号下x/y的一阶偏导数

(注:偏导数的符号姑且用"d"表示)dz/dx=1/{y[2(x/y)^0.5]}(算z对x的偏导数时,把y看成是一个常数即可)dz/dy=-x/{y^2*[2(x/y)^0.5]}(算z对y的偏导数