z=xy xF(u)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:32:11
用z'表示z的共轭复数.|(z-u)/(1-z'u)|(分子分母同时乘以z)=|(z-u)z/[z(1-z'u)]|=|(z-u)z/(z-zz'u)|(注意到|z|=1,zz'=|z|^2=1)=|
解:假设z=a+bi则u=(a^2-b^2-2)+2abi因为|z|=1,则a^2+b^2=1(数形结合分析可以知道-1
由柯西不等式(a^2+b^2+c^2)(x^2+y^2+z^2)>=(ax+by+cz)^2,得((1/√2)^2+(1/√3)^2+1)(2x^2+3y^2+z^2)>=(x+y+z)^22x^2+
试试这样行不行;clear all;clc;u=0:pi/40:3*pi;x=(1+cos(u)).*cos(u);y=(1+cos(u)).*sin(u);z=sin(u);plot3(x
偏z/偏x=(偏z/偏f)*f'x=偏z/偏f*1=偏z/偏f;偏z/偏u=(偏z/偏f)*(偏f/偏u)+偏g/偏u+偏h/偏u.
z=f(x,u),u=xy,求z对x的二阶偏导数∂z/∂x=∂f/∂x+(∂f/∂u)(∂u/∂x)=&
梯度是倒三角.记a为p方向单位矢量b为w方向单位矢量c为z方向单位矢量结果为(2pw-wz)a+(p^2+3z^2w^2-pz)b+_(2zw^3-pw)c
|z|=1在坐标图上轨迹是以原点为圆心,半径为1的圆则|z-3-4i|的几何意义就是圆上的点到点(3,4)的距离则|z-3-4i|的最小值=圆心O到(3,4)的距离-半径=5-1=4|z-3-4i|的
第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方
symsuv;d=[-5:0.5:5];[uv]=meshgrid(d);x=u.*sin(v),y=u.*cos(v),z=u;surf(x,y,z)
σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)
和实数的解法一样,只要实/虚分开就行z+u=1+i1式z-u=lg(5/2)-(lg(5/2))i2式1+2式2z=1+lg2.5+(1-lg2.5)i=lg25+(lg4)i得到z=lg5+(lg2
u=ln(xy+z)du=d[ln(xy+z)]/dx*dx+d[ln(xy+z)]/dy*dy+d[ln(xy+z)]/dz*dz=y/(xy+z)*dx+x/(xy+z)*dy+1/(xy+z)*
分别把x,y,z,t当做为之数,其余都是常数,求就行了再问:具体怎么做呢?麻烦写清楚些
本题的解答,需要说明一下:1、因为函数f是x+y的函数,也就是复合关系: f是u 的函数,而u=x+y;2、无论是对x求导,还是对y求导,都得先对u&nbs
U={1,2,3,4,5,6,7,8}1)CuA={1,3,4,5,6}CuB={1,2,4,8}
grad(u)=(∂u/∂x,∂u/∂y,∂u/∂z)=(y^2,2xy,3z^2),所以div(grad(u))=div(y^
由链式法则知道:再问:就你懂我是什么意思了!!激动地哭死!!但是答案错了。。答案4xyf“(u)再答:怎么求偏导都不会有xy这一项,因为(x^2+y^2)对x求偏导,y就消失了,除非你求混合导就是这个
设z=cosA+isinAu=1+(cosA+isinA)²=1+cos²A-sin²A+i*2sinAcosA=(1+cos2A)+isin2A|u|²=(1