∠AOB=45度,点M,N分别是射线

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/03 09:56:24
已知∠AOB=60,点P到射线OA,OB的距离分别为2根号3 和根号3,垂足分别为M,N,则ON的长为

答案为(5或3)1:延长NP,交OA于点K,在三角形KON中,由三角形内角和定理可知,角OKN=30度,所以PM=1/2PK,所以PK=4根号3,所以KN=4根号3+根号3,所以ON=KN/tan60

如图,∠AOB=50°,P为∠AOB内部一点,点M、N分别是OA、OB上的动点,当△PMN周长最小时,∠MPN的大小是多

80度.做P点相对AO,BO的对称点X,Y,连接XY与AO,BO的交点就是使PMN周长最小的M,N.

如图,∠AOB内有一点P,P关于OA,OB的对称点分别为P1,P2,连接P1P2交OA于点M,交OB于点N,若P1P2=

∵P与P1关于OA对称,∴OA为线段PP1的垂直平分线,∴MP=MP1,同理,P与P2关于OA对称,∴OB为线段PP2的垂直平分线,∴NP=NP2,∴P1P2=P1M+MN+NP2=MP+MN+NP=

如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于点M,交OB于点N,P1P

如图,∵P点关于OA、OB的对称点P1,P2,∴P1M=PM,P2N=PN,△PMN的周长=MN+PM+PN=MN+P1M+P2N=P1P2,∵P1P2=15,∴△PMN的周长为15.故选B.

如图,已知∠AOB=30°,点P为∠AOB内一定点,且OP=5cm,点M,N分别在OA,OB上运动.

:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+PN+MN=MN+P1M+P2N=P1P2=5cm

如图,用三角尺可按下面方法画角平分线:在∠AOB的两边上分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,

在Rt△OPM和Rt△OPN中,OM=ONOP=OP,所以Rt△OPM≌Rt△OPN,所以∠POM=∠PON,即OP平分∠AOB.

如图,OC是∠AOB内的一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=m°,∠BOC=n°,则∠DOE的度

∵OD、OE分别平分∠AOB、∠AOC,∠AOC=m°,∠BOC=n°,∴∠AOE=∠COE=12∠AOC=m°2,∠BOC=n°,又∵∠AOB=m°+n°,∴∠DOA=12∠AOB=12(m°+n°

已知:如图,∠AOB内一点P,P1,P2分别P是关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5c

∵P与P1关于OA对称,∴OA为线段PP1的垂直平分线,∴MP=MP1,同理,P与P2关于OB对称,∴OB为线段PP2的垂直平分线,∴NP=NP2,∴P1P2=P1M+MN+NP2=MP+MN+NP=

在圆O中,半径为4,角AOB=60度.点C为弧AB中点,CM垂直OA,CN垂直OB,垂足分别为点M,N

(1)由于C为弧AB中点,则∠MOC=∠COB(等弧所对的圆心角相等)又CM垂直OA,CN垂直OB,则易知△OMC≌△ONC则OM=ON,又∠AOB=60度,则△OMN为正三角形.又OC=4,∠AOC

已知∠AOB内部有一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,

点P1和P关于OA对称,则OP1=OP=2;同理:OP2=OP=2.∠P1OA=∠POA;∠P2OB=∠POB.故∠P1OA+∠P2OB=∠POA+∠POB=45度,∠P1OP2=90度.所以,S△O

如图,P在∠AOB内,点M,点N分别是点P关于OA,OB的对称点,若MN=10cm,求三角形PEF的周长.

题目不完整.不过可以猜一把:E、F分别为MN与OA、OB的交点.对吧?那么△PEF周长=MN=10cm.因为点M,点N分别是点P关于OA,OB的对称点,所以OA、OB分别为等腰△MOP、等腰△NOP的

如图,角AOB内有一点P,分别作出点P关于OA,PB的对称点P1,P2,交OA于点M,交OB于点N.当角AOB=25°时

因为P1和P2是点P 分别关于OA和OB的对称点973所以OA垂直平分PP1173所以P1M=PM  OB垂直平分PP2,所以PN=P2N,因为P1P2=P1M+MN+P2N=5,所以P1P2=PM+

如图所示,已知∠AOB的两边上分别取点M,N使OM=ON,再过点M画OA的垂线,过点N画OB的垂线,两垂线交于点P,那么

证明:因为OM=ON,而且∠PMO=∠PNO,又因△OPM和△OPN有公用边OP,所以△OPM全等于△OPN(SAS边角边),所以∠POM=∠PON,所以OP平分∠AOB,由此得到射线OP是∠AOB的

如图所示,在△AOB中,OA=a,OB=b,而M,N分别是△AOB的两边OA,OB上的点,且OM=λa(0<λ&l

很高兴为您解答,【学习宝典】团队为您答题.请点击下面的【选为满意回答】按钮,

用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,

若M在OA上,N在OB上设过M的垂线交OB于C,过N的垂线交OA于D在△OMC,△OND中∠O=∠O∠OND=∠OMCOM=ON∴△OMC≌△OND∴OD=OC∵OM=ON∴OD-OM=OC-ON即M

在已知∠AOB的两边上,分别取OM=ON,再分别过点M,N做OA,OB的垂线.交点为P,画射线OB则OOP平分∠AOB,

1.分别过点M,N做OA,OB的垂线交OB于E,交OA于F∴∠ONF=∠OME=90°∵∠FON=∠EOM,ON=OM∴△FON≌△EOM∴OE=OF,∠OEM=∠OFN∴OE-ON=OF-OM∴EN

如图P是∠AOB内一点,P1,P2分别是关于OA,OB的对称点,连结P1P2,交OA于点M,交OB于点N,已知P1P2=

连接PP1,PP2,因为轴对称 所以MP1=MP,NP2=NP因为P1P2=5 所以C△PMN=PM+PN+MN=P1P2