∫(x sinx)f(x)dx=x sinx C,求∫1 f(x)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:02:20
再答:注意xsinx的积分哦再答:再问:特别好,谢谢再答:不用谢,能帮到你我很开心再答:祝你天天开心,也祝我天天开心
再问:是用分部积分吗?再答:后面的积分才是分部积分
∵∫f(x)dx=xsinx+c[Given,已知]∴f(x)=sinx+xcosx[Derivative,求导]∴∫xf'(x)dx=∫xdf(x)[Completingdifferentiatio
f(x)=xsinx-x∫[0→x]f(t)dt+∫[0→x]tf(t)dtf(0)=0f'(x)=sinx+xcosx-∫[0→x]f(t)dt-xf(x)+xf(x)=sinx+xcosx-∫[0
刚用MATHLAB试了下,它的不定积分不能用初等函数表示,属于超越积分,所以不用再想了.下面是MATHLAB的运算结果:>>F=int('x^2/(x*sin(x)+cos(x))^2')F1=sim
f'(x)=sinx+xcosx-(1-lnx)/x²
Letu=tx,du=xdtL=∫(0~1)ƒ[tx]dt=[1/x]∫(0~x)ƒ[u]du=ƒ[x]+xsinx∫(0~x)ƒ[u]du=xƒ[x
∫(2-xsinx)/xdx=∫(2/x-sinx)dx=2lnx+cosx+C
令tx=u则∫f(tx)dt(从0到1)=∫f(u)d(u/x)(从0到x)=(1/x)∫f(u)du(从0到x)带入原方程∫f(u)du(从0到x)=xf(x)+x^2sinx两边微分f(x)=f(
第一问我比较确定,不知是不是打错了/>再问:û�����⣬��������2����,���Բ���д���㿴����������ô再答:��Ŀ���ˣ����f(sinx)����sinx�����
由于f(x)的原函数为xsinx,所以∫f(x)dx=xsinx∴f(x)=d/dx(xsinx)=sinx+xcosx∫xf'(x)dx=∫xd[f(x)]下一步应该等于x*f(x)-∫f(x)dx
经济数学团队帮你解答,有不清楚请追问.请及时评价.
F(x)=sinx/(1+xsinx)F'(x)=f(x)∫f'(x)dx=f(x)=F'(x)=[sinx/(1+xsinx)]'=[cosx(1+xsinx)-sinx(sinx+xcosx)]/
∫[0,π](xsinx)/(1+cos²x)dx=∫[0,π](xsinx)/(2-sin²x)dx,设f(x)=x/(2-x²),则f(sinx)=sinx/(2-s
不定积分为(x*sec^2x-tanx)/2,所以0->π的定积分发散
a-b=2-xsinx-cos^2x=1-xsinx+sin^2x+cos^2x-cos^2x=1-xsinx+sinx^2=1-sinx(x-sinx)首先x>sinx(0<x<2
分部积分∫xdx-∫xsinxdx=1/2X^2+xcosx-sinx
∫(xcosx+sinx)/(xsinx)dx=∫xcosx/(xsinx)dx+∫sinx/(xsinx)dx=∫cosx/sinxdx+∫1/xdx=∫1/sinxd(sinx)+ln|x|=ln
∫(xsinx)/(cosx)^3dx=∫xtanx(secx)^2dx=∫xtanxdtanx=1/2∫xd(tanx)^2=1/2[x(tanx)^2-∫(tanx)^2dx]后面那一部分:∫(t