∫(x² y² z²)ds,为x=t,y=2t,z=3t上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:32:50
∫∫s(z+x+y)ds,式中S为球面x∧2+y∧2+z∧2=a∧2

这是第一类曲面积分,由于积分曲面关于三个坐标面均是对称的,而被积函数分别关于z,x,y是奇函数,因此本题结果为0再问:有过程么再答:没过程,直接写结果,分析过程已写给你了。

计算I=∫T(x^2+y^2+z^2)ds其中T为曲线{x^2+y^2+z^2=a^2,x+y+z=0

曲线积分中积分曲线的方程是可以带人到积分表达式中的,因此I=∮a^2ds=a^2∮ds,而根据曲线积分的几何意义,∮ds就等于积分闭曲线的周长,由曲线的方程知积分曲线为半径等于a的圆周,其周长∮ds等

求下列第一型曲线积分 ∫L√(2y^2+z^2)ds,其中L为球面x^2+y^2+z^2=a^2与平面x=y的交线.

你的答案是正确的,书上给的答案错误.在计算∫Lds时应当用曲线的周长,所以你给出球大圆的周长是正确的.而书上说的椭圆2y^2+z^2=a^2其实是那个球大圆投影到XOY面后的椭圆,这个显然不是题中的曲

计算 ∫ ∫∑(x^2+y^2)dS,其中为∑球面x^2+y^2+z^2=a^2 计算曲面积分

再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分

考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ&#

∫∫(x^2+y^2)dS,∑为面z=√(x^2+y^2 )及平面z=1所围成的立体的表面.

∑有两部分构成,∑1为锥面,∑2为z=1这个平面先算∑1:方程为z=√(x^2+y^2)dz/dx=x/√(x^2+y^2),dz/dy=y/√(x^2+y^2)dS=√(1+(dz/dx)²

设S:(x-a)^2+(y-b)^2+(z-c)^2 =1,则∫∫(x+y+z)dS= ( )

这个题考查的是第一类曲面积分的质心公式的使用质心公式在重积分和线面积分中都有其类似的形式要注意不要误用高斯公式,高斯公式用于第二类曲面积分中质心公式和此题的解答请参见下图

计算∫∫∑(x^2+y^2)dS其中∑为锥面z=√(x^2+y^2)及平面z=1围成的整个边界曲面

再问:我漏了平面的了。还有一道题!再答:说来看看,不过要确保那个曲面是有限的

∫∫(x^2+y^2+z^2)dS,积分曲面为x^2+y^2+z^2=a^2(x≥0 y≥0)与平面x=0,y=0所围成

如图:整个封闭曲面可分为四部分:Σ=Σ1+Σ2+Σ3+Σ4∫∫Σ1(x²+y²+z²)dS,曲面为z=0=∫∫Σ1(x²+y²)dS=∫∫D(x

计算∫∫(z+2x+4\3y)ds,其中∑为平面x\2+y\3+z\4=1在第一卦限中的部分.

平面方程两边乘以4,得z+2x+4\3y=4,所以积分∫∫(z+2x+4\3y)ds=∫∫4ds,接下来计算平面与三坐标轴的三个交点围成的△的面积即可.方法不唯一,比如计算四面体的体积,而原点到平面的

设球面∑:x^2+y^2+z^2=1,则曲面积分∫∫(x+y+z+1)^2dS=

∵x²+y²+z²=1==>z=±√(1-x²-y²)令S1:z=√(1-x²-y²),S2:z=-√(1-x²-y&#

球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds

球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x^2+y^2+z^2-2z)ds的值

不需要楼上那么麻烦啊,而且楼上也做错了首先积分曲面关于xoy面对称,对于-2z这个奇函数,积分结果为0.原式=∫∫(x^2+y^2+z^2)ds=∫∫1ds=4π1、第一类曲面积分可以用曲面方程化简被

设s为球面x^2+y^2+z^2=1,求曲面积分∫∫(x+y+z+1)ds的值 答案是4∏

根据球面的对称性,所以对关于x,y,z的奇函数的积分为0所以∫∫xdS=∫∫ydS=∫∫zdS=0所以原积分=∫∫(x+y+z+1)dS=∫∫dS=球面的表面积=4π

计算∫∫(S)(x+y+z)dS,其中S为曲面x^2+y^2+z^2=a^2,z>=0

先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0

计算I=∫∫(x^2+y^2+z^2)ds,其中Σ为球面x^2+y^2+z^2=2az(a>0)

Σ分为两部分Σ1:z=a+√(a^2-x^2-y^2)与Σ2:z=a-√(a^2-x^2-y^2).Σ1与Σ2在xoy面上的投影区域都是D:x^2+y^2≤a^2.Σ1与Σ2上,dS=a/√(a^2-